A356637 a(n) = A000265(A263931(n)).
1, 1, 1, 1, 1, 9, 3, 3, 45, 5, 1, 21, 7, 175, 675, 45, 45, 1485, 5775, 5775, 45045, 2145, 195, 8775, 2925, 5733, 22491, 833, 6545, 373065, 24871, 24871, 1566873, 3086265, 181545, 357903, 39767, 39767, 156975, 309925, 61985, 5020785, 239085, 20322225, 160730325
Offset: 0
Keywords
Examples
Let n = 22 and consider the prime factorization of m = binomial(2*n, n): 2^3 * [3 * 5 * 13] * 23 * 29 * 31 * 37 * 41 * 43. Then a(22) = 3 * 5 * 13. This is what is left after the 'prime tail' A261130(n) and the 'prime head' A006519(m) = A001316(n) have been cut off.
Links
- Peter Luschny, Swing, divide and conquer the factorial, (excerpt).
- Peter Luschny, Fast Factorial Functions, a code repository.
- Eric Weisstein's World of Mathematics, Erdős Squarefree Conjecture.
Programs
-
Maple
A263931 := n -> binomial(2*n, n) / convert(select(isprime, {$n+1..2*n}), `*`): A000265 := n -> n / 2^padic[ordp](n, 2): seq(A000265(A263931(n)), n = 0..45);
-
SageMath
def A356637(n: int) -> int: m = 2 * n if m < 5: return 1 sqrtm = isqrt(m) + 1 R = prime_range(sqrtm, m // 3 + 1) factors = [x for x in R if is_odd(m // x)] for prime in prime_range(3, sqrtm): p: int = 1 q: int = m while True: q //= prime if q == 0: break if q & 1 == 1: p *= prime if p > 1: factors.append(p) return product(factors) print([A356637(n) for n in range(45)])
Comments