cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356644 Number of vertex cuts in the n-antiprism graph.

This page as a plain text file.
%I A356644 #37 Feb 16 2025 08:34:03
%S A356644 0,0,3,48,360,2057,10276,47552,209871,898168,3765080,15560725,
%T A356644 63681228,258826128,1046920155,4220390592,16973219016,68148598817,
%U A356644 273305152756,1095189435488,4386195036135,17559755662600,70280167711928,281233465458733,1125242449638300,4501812479503152
%N A356644 Number of vertex cuts in the n-antiprism graph.
%C A356644 Sequence extended to n = 1 using formula.
%H A356644 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>
%H A356644 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCut.html">Vertex Cut</a>
%H A356644 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (12,-56,130,-160,104,-33,4).
%F A356644 a(n) = 2^(2*n) - A286183(n)-1. - _Pontus von Brömssen_, Aug 21 2022
%F A356644 a(n) = 4^n + 2*n - LucasL(2*n) - 2*n*Fibonacci(2 n) - 1. - _Eric W. Weisstein_, Aug 30 2022
%F A356644 a(n) = 12*a(n-1) - 56*a(n-2) + 130*a(n-3) -160*a(n-4) + 104*a(n-5) - 33*a(n-6) + 4*a(n-7). - _Eric W. Weisstein_, Aug 30 2022
%F A356644 G.f.: x^3*(-3-12*x+48*x^2-35*x^3+8*x^4)/((-1+4*x)*(-1+4*x-4*x^2+x^3)^2). - _Eric W. Weisstein_, Aug 30 2022
%t A356644 Table[4^n + 2 n - LucasL[2 n] - 2 n Fibonacci[2 n] - 1, {n, 20}]
%t A356644 LinearRecurrence[{12, -56, 130, -160, 104, -33, 4}, {0, 0, 3, 48, 360, 2057, 10276}, 20]
%t A356644 CoefficientList[Series[x^2 (-3 - 12 x + 48 x^2 - 35 x^3 + 8 x^4)/((-1 + x)^2 (-1 + 4 x) (1 - 3 x + x^2)^2), {x, 0, 20}], x]
%Y A356644 Cf. A286183.
%K A356644 nonn
%O A356644 1,3
%A A356644 _Eric W. Weisstein_, Aug 19 2022
%E A356644 a(13)-a(26) (based on A286183) from _Pontus von Brömssen_, Aug 21 2022