This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356651 #10 Sep 09 2022 04:06:21 %S A356651 1,0,2,0,8,6,0,32,24,20,0,128,96,80,70,0,512,384,320,280,252,0,2048, %T A356651 1536,1280,1120,1008,924,0,8192,6144,5120,4480,4032,3696,3432,0,32768, %U A356651 24576,20480,17920,16128,14784,13728,12870,0,131072,98304,81920,71680,64512,59136,54912,51480,48620 %N A356651 Triangle read by rows. T(n, k) = [x^k](0^n + 4^n * ((1 - x)^(-1/2) - 1)). %F A356651 T(n, 0) = 0^n, T(n, n) = binomial(2*n, n), otherwise T(n, k) = 4^(n - k)*T(k, k). %e A356651 [0] 1; %e A356651 [1] 0, 2; %e A356651 [2] 0, 8, 6; %e A356651 [3] 0, 32, 24, 20; %e A356651 [4] 0, 128, 96, 80, 70; %e A356651 [5] 0, 512, 384, 320, 280, 252; %e A356651 [6] 0, 2048, 1536, 1280, 1120, 1008, 924; %e A356651 [7] 0, 8192, 6144, 5120, 4480, 4032, 3696, 3432; %e A356651 [8] 0, 32768, 24576, 20480, 17920, 16128, 14784, 13728, 12870; %e A356651 [9] 0, 131072, 98304, 81920, 71680, 64512, 59136, 54912, 51480, 48620; %p A356651 ogf := n -> 0^n + 4^n * ((1 - x)^(-1/2) - 1): %p A356651 ser := n -> series(ogf(n), x, 32): %p A356651 seq(seq(coeff(ser(n), x, k), k = 0..n), n = 0..9); %Y A356651 Cf. A000984, A004171, A172060 (row sums), A357012. %K A356651 nonn,tabl %O A356651 0,3 %A A356651 _Peter Luschny_, Sep 08 2022