This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356653 #11 Sep 02 2022 08:00:30 %S A356653 1,1,6,1,70,21,1,434,31,93,1,2286,1905,127,1143,1,11242,1533,511,73, %T A356653 219,1,53222,14329,10235,2047,2047,6141,1,245730,40955,40955,368595, %U A356653 24573,8191,73719,1,1114078,294903,4681,491505,42129,4681,14043,42129 %N A356653 Triangle read by rows. Denominators of the coefficients of a sequence of rational polynomials r_n(x) with r_n(1) = B(2*n), where B(n) are the Bernoulli numbers. %C A356653 For formulas and comments see A356652. %F A356653 T(n, k) = denominator([x^k] r_n(x)), where the polynomials r_n(x) are defined in A356652. %e A356653 The triangle T(n, k) begins: %e A356653 [0] 1; %e A356653 [1] 1, 6; %e A356653 [2] 1, 70, 21; %e A356653 [3] 1, 434, 31, 93; %e A356653 [4] 1, 2286, 1905, 127, 1143; %e A356653 [5] 1, 11242, 1533, 511, 73, 219; %e A356653 [6] 1, 53222, 14329, 10235, 2047, 2047, 6141; %p A356653 # Using function PTrans from A269941. %p A356653 R_row := n -> seq(coeffs(p), p in PTrans(n, n -> 1/((2*n)*(2*n + 1)), %p A356653 n -> (2*n)!/(2-2^(2*n)))): seq(lprint(seq(denom(r), r in R_row(n))), n=0..9); %Y A356653 Cf. A356652 (numerators), A269941. %K A356653 nonn,frac,tabl %O A356653 0,3 %A A356653 _Peter Luschny_, Sep 02 2022