This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356654 #8 Sep 01 2022 17:29:13 %S A356654 1,0,1,0,3,2,0,13,18,6,0,73,158,108,24,0,501,1510,1590,720,120,0,4051, %T A356654 15962,23040,15960,5400,720,0,37633,186270,345786,325920,168000,45360, %U A356654 5040,0,394353,2385182,5469492,6579384,4594800,1884960,423360,40320 %N A356654 Triangle read by rows. T(n, k) = k! * Sum_{j=k..n} Lah(n, j) * Stirling2(j, k), where Lah(n, k) = A271703(n, k). %C A356654 The same construction with Stirling1 in place of Stirling2 gives A225479, the ordered Stirling cycle numbers. %e A356654 Triangle T(n, k) begins: %e A356654 [0] 1; %e A356654 [1] 0, 1; %e A356654 [2] 0, 3, 2; %e A356654 [3] 0, 13, 18, 6; %e A356654 [4] 0, 73, 158, 108, 24; %e A356654 [5] 0, 501, 1510, 1590, 720, 120; %e A356654 [6] 0, 4051, 15962, 23040, 15960, 5400, 720; %e A356654 [7] 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040; %e A356654 [8] 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320; %p A356654 L := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1) * n! / k!): %p A356654 T := (n, k) -> k! * add(L(n, j) * Stirling2(j, k), j = k..n): %p A356654 seq(seq(T(n, k), k = 0..n), n = 0..9); %t A356654 T[n_, k_] := k! * Sum[Binomial[n, j] * FactorialPower[n - 1, n - j] * StirlingS2[j, k], {j, k, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Sep 01 2022 *) %Y A356654 Cf. A271703, A048993, A225479, A000262 (column 1), A052838 (column 2), A084358 (row sums). %K A356654 nonn,tabl %O A356654 0,5 %A A356654 _Peter Luschny_, Sep 01 2022