cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356656 Partition triangle read by rows. The coefficients of the incomplete Bell polynomials.

This page as a plain text file.
%I A356656 #11 Aug 28 2022 16:57:36
%S A356656 1,0,1,0,1,1,0,1,3,1,0,1,4,3,6,1,0,1,5,10,10,15,10,1,0,1,6,15,10,15,
%T A356656 60,15,20,45,15,1,0,1,7,21,35,21,105,70,105,35,210,105,35,105,21,1,0,
%U A356656 1,8,28,56,35,28,168,280,210,280,56,420,280,840,105,70,560,420,56,210,28,1
%N A356656 Partition triangle read by rows. The coefficients of the incomplete Bell polynomials.
%C A356656 We call a triangle a 'partition triangle' if the rows have length A000041 or A000041 + 1.
%H A356656 E. T. Bell, <a href="http://www.jstor.org/stable/1968431">Exponential polynomials</a>, Ann. Math., 35 (1934), 258-277.
%H A356656 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a>.
%F A356656 In row n the coefficients of IBell(n, k, Z_n) for k = 0..n are lined up. Z_n denotes the set of variables z[0], z[1], ... z[n] of the incomplete Bell polynomial IBell(n, k) of degree k.
%e A356656 The triangle starts:
%e A356656 [0] 1;
%e A356656 [1] 0, 1;
%e A356656 [2] 0, 1, 1;
%e A356656 [3] 0, 1, 3,  1;
%e A356656 [4] 0, 1, [4,  3],  6,  1;
%e A356656 [5] 0, 1, [5, 10], [10, 15],  10,  1;
%e A356656 [6] 0, 1, [6, 15, 10], [15,  60, 15], [20, 45],  15,   1;
%e A356656 [7] 0, 1, [7, 21, 35], [21, 105, 70, 105], [35, 210, 105], [35, 105], 21, 1;
%e A356656 Summing the bracketed terms reduces the triangle to A048993.
%e A356656 The first few polynomials are:
%e A356656 [0] 1;
%e A356656 [1] 0, z[0];
%e A356656 [2] 0, z[1], z[0]^2;
%e A356656 [3] 0, z[2], 3*z[0]*z[1], z[0]^3;
%e A356656 [4] 0, z[3], 4*z[0]*z[2]+3*z[1]^2, 6*z[0]^2*z[1], z[0]^4;
%e A356656 [5] 0, z[4], 5*z[0]*z[3]+10*z[1]*z[2], 10*z[0]^2*z[2]+15*z[0]*z[1]^2, 10*z[0]^3* z[1], z[0]^5;
%e A356656 It is noteworthy that the substitution z[n] -> n! for n >= 0 yields A132393. More examples are given in the authors blog post (see links).
%p A356656 aRow := n -> seq(coeffs(IncompleteBellB(n, k, seq(z[i], i = 0..n))), k = 0..n):
%p A356656 seq(aRow(n), n = 0..8);
%o A356656 (SageMath)
%o A356656 from functools import cache
%o A356656 @cache
%o A356656 def incomplete_bell_polynomial(n, k):
%o A356656     Z = var(["z_" + str(i) for i in range(n - k + 1)])
%o A356656     R = PolynomialRing(ZZ, Z, n - k + 1, order='lex')
%o A356656     if k == 0: return R(k^n)
%o A356656     return R(sum(binomial(n-1,j-1) * incomplete_bell_polynomial(n-j,k-1) * Z[j-1]
%o A356656             for j in range(n - k + 2)).expand())
%o A356656 def poly_row(n): return [incomplete_bell_polynomial(n, k) for k in range(n + 1)]
%o A356656 def coeff_row(n): return flatten([[0] if (c := p.coefficients()) == [] else c for p in poly_row(n)])
%o A356656 for n in range(8): print(coeff_row(n))
%Y A356656 Variants: A036040, A080575, A178867. Row sums: A000110.
%Y A356656 A048993 (reduced triangle), A052810 (length of rows), A132393 (factorial substituion).
%K A356656 nonn,tabf
%O A356656 0,9
%A A356656 _Peter Luschny_, Aug 28 2022