cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356696 a(n) = Fibonacci(2n-1) - 2^n + binomial(n,2) + 2.

Original entry on oeis.org

2, 1, 1, 2, 5, 14, 42, 128, 384, 1123, 3204, 8955, 24629, 66913, 180127, 481568, 1280855, 3393644, 8965476, 23633702, 62197602, 163483201, 429300366, 1126514817, 2954438135, 7745187919, 20297902537, 53182073798, 139315427369, 364898425658, 955648284654
Offset: 0

Views

Author

R. J. Mathar, Aug 23 2022

Keywords

Comments

If n>0, number of Catalan words of length n avoiding the pattern 1234. The unrestricted Catalan words of length n are enumerated by A000108(n-1).

Crossrefs

Cf. A000045, A000108, A000325 (avoiding 123), A307464, A307465, A307466.

Programs

  • Mathematica
    LinearRecurrence[{8, -25, 39, -32, 13, -2}, {2, 1, 1, 2, 5, 14}, 50] (* or *)
    A356696[n_] := Fibonacci[2*n - 1] - 2^n + Binomial[n, 2] + 2;
    Array[A356696, 50, 0] (* Paolo Xausa, Aug 29 2024 *)

Formula

G.f.: ( 2-15*x+43*x^2-59*x^3+39*x^4-9*x^5 ) / ( (2*x-1)*(x^2-3*x+1)*(x-1)^3 ).