This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356733 #12 Jan 28 2025 16:55:06 %S A356733 0,1,1,1,1,0,1,1,1,2,1,0,1,2,0,1,1,0,1,2,2,2,1,0,1,2,1,2,1,0,1,1,2,2, %T A356733 0,0,1,2,2,2,1,1,1,2,0,2,1,0,1,2,2,2,1,0,2,2,2,2,1,0,1,2,2,1,2,1,1,2, %U A356733 2,1,1,0,1,2,0,2,0,1,1,2,1,2,1,1,2,2,2,2,1,0,2,2,2,2,2,0,1,2,2,2,1,1,1,2,0 %N A356733 Number of neighborless parts in the integer partition with Heinz number n. %C A356733 A part x is neighborless if neither x - 1 nor x + 1 are parts. %C A356733 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %H A356733 Antti Karttunen, <a href="/A356733/b356733.txt">Table of n, a(n) for n = 1..65537</a> %H A356733 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %F A356733 a(n) = A001221(n) - A356735(n). %e A356733 The prime indices of 42 are {1,2,4}, of which only 4 is neighborless, so a(42) = 1. %e A356733 The prime indices of 462 are {1,2,4,5}, all of which have neighbors, so a(462) = 0. %e A356733 The prime indices of 1300 are {1,1,3,3,6}, with neighborless parts {1,3,6}, so a(1300) = 3. %t A356733 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356733 Table[Length[Select[Union[primeMS[n]],!MemberQ[primeMS[n],#-1]&&!MemberQ[primeMS[n],#+1]&]],{n,100}] %o A356733 (PARI) A356733(n) = if(1==n,0,my(pis=apply(primepi,factor(n)[,1])); sum(i=1, #pis, ((n%prime(pis[i]+1)) && (pis[i]==1 || (n%prime(pis[i]-1)))))); \\ _Antti Karttunen_, Jan 28 2025 %Y A356733 Positions of first appearances are 1 followed by A066205. %Y A356733 Dominated by A287170 (firsts also A066205). %Y A356733 Positions of terms > 0 are A356734. %Y A356733 The complement is counted by A356735. %Y A356733 A001221 counts distinct prime factors, sum A001414. %Y A356733 A003963 multiplies together prime indices. %Y A356733 A007690 counts partitions with no singletons, complement A183558. %Y A356733 A056239 adds up prime indices, row sums of A112798, lengths A001222. %Y A356733 A073491 lists numbers with gapless prime indices, complement A073492. %Y A356733 A132747 counts non-isolated divisors, complement A132881. %Y A356733 A355393 counts partitions w/o a neighborless singleton, complement A356235. %Y A356733 A355394 counts partitions w/o a neighborless part, complement A356236. %Y A356733 A356069 counts gapless divisors, initial A356224 (complement A356225). %Y A356733 A356607 counts strict partitions w/ a neighborless part, complement A356606. %Y A356733 Cf. A000005, A066312, A286470, A289508, A325160, A328166, A328335, A356231, A356233, A356234, A356237. %K A356733 nonn %O A356733 1,10 %A A356733 _Gus Wiseman_, Aug 26 2022 %E A356733 Data section extended to a(105) by _Antti Karttunen_, Jan 28 2025