cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356733 Number of neighborless parts in the integer partition with Heinz number n.

This page as a plain text file.
%I A356733 #12 Jan 28 2025 16:55:06
%S A356733 0,1,1,1,1,0,1,1,1,2,1,0,1,2,0,1,1,0,1,2,2,2,1,0,1,2,1,2,1,0,1,1,2,2,
%T A356733 0,0,1,2,2,2,1,1,1,2,0,2,1,0,1,2,2,2,1,0,2,2,2,2,1,0,1,2,2,1,2,1,1,2,
%U A356733 2,1,1,0,1,2,0,2,0,1,1,2,1,2,1,1,2,2,2,2,1,0,2,2,2,2,2,0,1,2,2,2,1,1,1,2,0
%N A356733 Number of neighborless parts in the integer partition with Heinz number n.
%C A356733 A part x is neighborless if neither x - 1 nor x + 1 are parts.
%C A356733 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%H A356733 Antti Karttunen, <a href="/A356733/b356733.txt">Table of n, a(n) for n = 1..65537</a>
%H A356733 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%F A356733 a(n) = A001221(n) - A356735(n).
%e A356733 The prime indices of 42 are {1,2,4}, of which only 4 is neighborless, so a(42) = 1.
%e A356733 The prime indices of 462 are {1,2,4,5}, all of which have neighbors, so a(462) = 0.
%e A356733 The prime indices of 1300 are {1,1,3,3,6}, with neighborless parts {1,3,6}, so a(1300) = 3.
%t A356733 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A356733 Table[Length[Select[Union[primeMS[n]],!MemberQ[primeMS[n],#-1]&&!MemberQ[primeMS[n],#+1]&]],{n,100}]
%o A356733 (PARI) A356733(n) = if(1==n,0,my(pis=apply(primepi,factor(n)[,1])); sum(i=1, #pis, ((n%prime(pis[i]+1)) && (pis[i]==1 || (n%prime(pis[i]-1)))))); \\ _Antti Karttunen_, Jan 28 2025
%Y A356733 Positions of first appearances are 1 followed by A066205.
%Y A356733 Dominated by A287170 (firsts also A066205).
%Y A356733 Positions of terms > 0 are A356734.
%Y A356733 The complement is counted by A356735.
%Y A356733 A001221 counts distinct prime factors, sum A001414.
%Y A356733 A003963 multiplies together prime indices.
%Y A356733 A007690 counts partitions with no singletons, complement A183558.
%Y A356733 A056239 adds up prime indices, row sums of A112798, lengths A001222.
%Y A356733 A073491 lists numbers with gapless prime indices, complement A073492.
%Y A356733 A132747 counts non-isolated divisors, complement A132881.
%Y A356733 A355393 counts partitions w/o a neighborless singleton, complement A356235.
%Y A356733 A355394 counts partitions w/o a neighborless part, complement A356236.
%Y A356733 A356069 counts gapless divisors, initial A356224 (complement A356225).
%Y A356733 A356607 counts strict partitions w/ a neighborless part, complement A356606.
%Y A356733 Cf. A000005, A066312, A286470, A289508, A325160, A328166, A328335, A356231, A356233, A356234, A356237.
%K A356733 nonn
%O A356733 1,10
%A A356733 _Gus Wiseman_, Aug 26 2022
%E A356733 Data section extended to a(105) by _Antti Karttunen_, Jan 28 2025