cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356734 Heinz numbers of integer partitions with at least one neighborless part.

This page as a plain text file.
%I A356734 #7 Aug 30 2022 09:41:50
%S A356734 2,3,4,5,7,8,9,10,11,13,14,16,17,19,20,21,22,23,25,26,27,28,29,31,32,
%T A356734 33,34,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,55,56,57,58,59,61,
%U A356734 62,63,64,65,66,67,68,69,70,71,73,74,76,78,79,80,81,82,83
%N A356734 Heinz numbers of integer partitions with at least one neighborless part.
%C A356734 First differs from A319630 in lacking 1 and having 42 (prime indices: {1,2,4}).
%C A356734 A part x is neighborless if neither x - 1 nor x + 1 are parts.
%C A356734 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A356734 The terms together with their prime indices begin:
%e A356734     2: {1}
%e A356734     3: {2}
%e A356734     4: {1,1}
%e A356734     5: {3}
%e A356734     7: {4}
%e A356734     8: {1,1,1}
%e A356734     9: {2,2}
%e A356734    10: {1,3}
%e A356734    11: {5}
%e A356734    13: {6}
%e A356734    14: {1,4}
%e A356734    16: {1,1,1,1}
%e A356734    17: {7}
%e A356734    19: {8}
%e A356734    20: {1,1,3}
%e A356734    21: {2,4}
%e A356734    22: {1,5}
%t A356734 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A356734 Select[Range[100],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]
%Y A356734 These partitions are counted by A356236.
%Y A356734 The singleton case is A356237, counted by A356235 (complement A355393).
%Y A356734 The strict case is counted by A356607, complement A356606.
%Y A356734 The complement is A356736, counted by A355394.
%Y A356734 A001221 counts distinct prime factors, sum A001414.
%Y A356734 A003963 multiplies together the prime indices of n.
%Y A356734 A007690 counts partitions with no singletons, complement A183558.
%Y A356734 A056239 adds up prime indices, row sums of A112798, lengths A001222.
%Y A356734 A073491 lists numbers with gapless prime indices, complement A073492.
%Y A356734 A132747 counts non-isolated divisors, complement A132881.
%Y A356734 A356069 counts gapless divisors, initial A356224 (complement A356225).
%Y A356734 Cf. A000005, A286470, A287170 (firsts A066205), A289508, A325160, A328166, A328335, A356231, A356233, A356234.
%K A356734 nonn
%O A356734 1,1
%A A356734 _Gus Wiseman_, Aug 26 2022