This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356734 #7 Aug 30 2022 09:41:50 %S A356734 2,3,4,5,7,8,9,10,11,13,14,16,17,19,20,21,22,23,25,26,27,28,29,31,32, %T A356734 33,34,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,55,56,57,58,59,61, %U A356734 62,63,64,65,66,67,68,69,70,71,73,74,76,78,79,80,81,82,83 %N A356734 Heinz numbers of integer partitions with at least one neighborless part. %C A356734 First differs from A319630 in lacking 1 and having 42 (prime indices: {1,2,4}). %C A356734 A part x is neighborless if neither x - 1 nor x + 1 are parts. %C A356734 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A356734 The terms together with their prime indices begin: %e A356734 2: {1} %e A356734 3: {2} %e A356734 4: {1,1} %e A356734 5: {3} %e A356734 7: {4} %e A356734 8: {1,1,1} %e A356734 9: {2,2} %e A356734 10: {1,3} %e A356734 11: {5} %e A356734 13: {6} %e A356734 14: {1,4} %e A356734 16: {1,1,1,1} %e A356734 17: {7} %e A356734 19: {8} %e A356734 20: {1,1,3} %e A356734 21: {2,4} %e A356734 22: {1,5} %t A356734 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356734 Select[Range[100],Function[ptn,Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS] %Y A356734 These partitions are counted by A356236. %Y A356734 The singleton case is A356237, counted by A356235 (complement A355393). %Y A356734 The strict case is counted by A356607, complement A356606. %Y A356734 The complement is A356736, counted by A355394. %Y A356734 A001221 counts distinct prime factors, sum A001414. %Y A356734 A003963 multiplies together the prime indices of n. %Y A356734 A007690 counts partitions with no singletons, complement A183558. %Y A356734 A056239 adds up prime indices, row sums of A112798, lengths A001222. %Y A356734 A073491 lists numbers with gapless prime indices, complement A073492. %Y A356734 A132747 counts non-isolated divisors, complement A132881. %Y A356734 A356069 counts gapless divisors, initial A356224 (complement A356225). %Y A356734 Cf. A000005, A286470, A287170 (firsts A066205), A289508, A325160, A328166, A328335, A356231, A356233, A356234. %K A356734 nonn %O A356734 1,1 %A A356734 _Gus Wiseman_, Aug 26 2022