This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356736 #10 Sep 01 2022 09:33:46 %S A356736 1,6,12,15,18,24,30,35,36,45,48,54,60,72,75,77,90,96,105,108,120,135, %T A356736 143,144,150,162,175,180,192,210,216,221,225,240,245,270,288,300,315, %U A356736 323,324,360,375,384,385,405,420,432,437,450,462,480,486,525,539,540 %N A356736 Heinz numbers of integer partitions with no neighborless parts. %C A356736 First differs from A066312 in having 1 and lacking 462. %C A356736 First differs from A104210 in having 1 and lacking 42. %C A356736 A part x is neighborless iff neither x - 1 nor x + 1 are parts. %C A356736 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A356736 The terms together with their prime indices begin: %e A356736 1: {} %e A356736 6: {1,2} %e A356736 12: {1,1,2} %e A356736 15: {2,3} %e A356736 18: {1,2,2} %e A356736 24: {1,1,1,2} %e A356736 30: {1,2,3} %e A356736 35: {3,4} %e A356736 36: {1,1,2,2} %e A356736 45: {2,2,3} %e A356736 48: {1,1,1,1,2} %e A356736 54: {1,2,2,2} %e A356736 60: {1,1,2,3} %e A356736 72: {1,1,1,2,2} %e A356736 75: {2,3,3} %e A356736 77: {4,5} %e A356736 90: {1,2,2,3} %e A356736 96: {1,1,1,1,1,2} %t A356736 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356736 Select[Range[100],Function[ptn,!Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS] %Y A356736 These partitions are counted by A355394. %Y A356736 The singleton case is the complement of A356237. %Y A356736 The singleton case is counted by A355393, complement A356235. %Y A356736 The strict complement is A356606, counted by A356607. %Y A356736 The complement is A356734, counted by A356236. %Y A356736 A000041 counts integer partitions, strict A000009. %Y A356736 A001221 counts distinct prime factors, sum A001414. %Y A356736 A003963 multiplies together the prime indices of n. %Y A356736 A007690 counts partitions with no singletons, complement A183558. %Y A356736 A056239 adds up prime indices, row sums of A112798, lengths A001222. %Y A356736 A073491 lists numbers with gapless prime indices, complement A073492. %Y A356736 Cf. A066312, A286470, A287170 (firsts A066205), A328171, A328187, A328221, A328335, A356231, A356234. %K A356736 nonn %O A356736 1,2 %A A356736 _Gus Wiseman_, Aug 31 2022