cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356749 a(n) is the number of trailing 1's in the dual Zeckendorf representation of n (A104326).

This page as a plain text file.
%I A356749 #11 Aug 26 2022 07:28:39
%S A356749 0,1,0,2,1,0,3,0,2,1,0,4,1,0,3,0,2,1,0,5,0,2,1,0,4,1,0,3,0,2,1,0,6,1,
%T A356749 0,3,0,2,1,0,5,0,2,1,0,4,1,0,3,0,2,1,0,7,0,2,1,0,4,1,0,3,0,2,1,0,6,1,
%U A356749 0,3,0,2,1,0,5,0,2,1,0,4,1,0,3,0,2,1,0
%N A356749 a(n) is the number of trailing 1's in the dual Zeckendorf representation of n (A104326).
%C A356749 The asymptotic density of the occurrences of k = 0, 1, 2, ... is 1/phi^(k+2), where phi = 1.618033... (A001622) is the golden ratio.
%C A356749 The asymptotic mean of this sequence is phi.
%H A356749 Amiram Eldar, <a href="/A356749/b356749.txt">Table of n, a(n) for n = 0..10000</a>
%e A356749   n  a(n)  A104326(n)
%e A356749   -  ----  ----------
%e A356749   0     0           0
%e A356749   1     1           1
%e A356749   2     0          10
%e A356749   3     2          11
%e A356749   4     1         101
%e A356749   5     0         110
%e A356749   6     3         111
%e A356749   7     0        1010
%e A356749   8     2        1011
%e A356749   9     1        1101
%t A356749 fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; a[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i ;; i + 2]] == {1, 0, 0}, v[[i ;; i + 2]] = {0, 1, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]
%Y A356749 Cf. A001622, A104326.
%Y A356749 Similar sequences: A003849, A035614, A276084, A278045.
%K A356749 nonn,base
%O A356749 0,4
%A A356749 _Amiram Eldar_, Aug 25 2022