cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356754 Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k.

This page as a plain text file.
%I A356754 #48 May 26 2023 14:10:04
%S A356754 2,4,6,7,9,11,11,13,15,17,16,18,20,22,24,22,24,26,28,30,32,29,31,33,
%T A356754 35,37,39,41,37,39,41,43,45,47,49,51,46,48,50,52,54,56,58,60,62,56,58,
%U A356754 60,62,64,66,68,70,72,74,67,69,71,73,75,77,79,81,83,85,87
%N A356754 Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k.
%C A356754 The first column of the triangle is the Lazy Caterer's sequence A000124.
%C A356754 Each subsequent column starts with A000124(n) + (2 * (n-1)).
%C A356754 The first downward diagonal is A046691(n).
%C A356754 Columns and downward diagonals of the triangle identify many sequences (possibly shifted) in the database. Examples can be found in crossrefs below.
%C A356754 The sum of the n-th upward diagonal of the triangle is A356288(n).
%F A356754 T(n,k) = ((n-1) * (n+2))/2 + 2*k.
%F A356754 T(n,k+1) = T(n,k) + 2, k < n.
%e A356754 Triangle T(n,k) begins:
%e A356754   n\k   1   2   3   4   5   6   7   8   9  10  11  ...
%e A356754    1:   2
%e A356754    2:   4   6
%e A356754    3:   7   9  11
%e A356754    4:  11  13  15  17
%e A356754    5:  16  18  20  22  24
%e A356754    6:  22  24  26  28  30  32
%e A356754    7:  29  31  33  35  37  39  41
%e A356754    8:  37  39  41  43  45  47  49  51
%e A356754    9:  46  48  50  52  54  56  58  60  62
%e A356754   10:  56  58  60  62  64  66  68  70  72  74
%e A356754   11:  67  69  71  73  75  77  79  81  83  85  87
%e A356754   ...
%t A356754 Table[((n-1)(n+2))/2+2k,{n,20},{k,n}]//Flatten (* _Harvey P. Dale_, May 26 2023 *)
%o A356754 (Python)
%o A356754 def T(n, k): return ((n-1) * (n+2))//2 + 2*k
%o A356754 for n in range(1, 12):
%o A356754     for k in range(1,(n+1)): print(T(n,k), end = ', ')
%o A356754 (Python)
%o A356754 # Indexed as a linear sequence.
%o A356754 def a000124(n): return n*(n+1)//2 + 1
%o A356754 def a(n):
%o A356754     l = m = 0
%o A356754     for k in range(1,n):
%o A356754         lc = a000124(k - 1)
%o A356754         if n >= lc:
%o A356754             l = lc
%o A356754             m = k
%o A356754         else: break
%o A356754     return n + m + (n - l)
%Y A356754 Cf. A000124, A004120, A046691, A051938, A055999, A056000, A155212, A167487, A167499, A167614, A246172, A334563, A356288.
%K A356754 nonn,tabl,easy
%O A356754 1,1
%A A356754 _Torlach Rush_, Aug 25 2022