This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356754 #48 May 26 2023 14:10:04 %S A356754 2,4,6,7,9,11,11,13,15,17,16,18,20,22,24,22,24,26,28,30,32,29,31,33, %T A356754 35,37,39,41,37,39,41,43,45,47,49,51,46,48,50,52,54,56,58,60,62,56,58, %U A356754 60,62,64,66,68,70,72,74,67,69,71,73,75,77,79,81,83,85,87 %N A356754 Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k. %C A356754 The first column of the triangle is the Lazy Caterer's sequence A000124. %C A356754 Each subsequent column starts with A000124(n) + (2 * (n-1)). %C A356754 The first downward diagonal is A046691(n). %C A356754 Columns and downward diagonals of the triangle identify many sequences (possibly shifted) in the database. Examples can be found in crossrefs below. %C A356754 The sum of the n-th upward diagonal of the triangle is A356288(n). %F A356754 T(n,k) = ((n-1) * (n+2))/2 + 2*k. %F A356754 T(n,k+1) = T(n,k) + 2, k < n. %e A356754 Triangle T(n,k) begins: %e A356754 n\k 1 2 3 4 5 6 7 8 9 10 11 ... %e A356754 1: 2 %e A356754 2: 4 6 %e A356754 3: 7 9 11 %e A356754 4: 11 13 15 17 %e A356754 5: 16 18 20 22 24 %e A356754 6: 22 24 26 28 30 32 %e A356754 7: 29 31 33 35 37 39 41 %e A356754 8: 37 39 41 43 45 47 49 51 %e A356754 9: 46 48 50 52 54 56 58 60 62 %e A356754 10: 56 58 60 62 64 66 68 70 72 74 %e A356754 11: 67 69 71 73 75 77 79 81 83 85 87 %e A356754 ... %t A356754 Table[((n-1)(n+2))/2+2k,{n,20},{k,n}]//Flatten (* _Harvey P. Dale_, May 26 2023 *) %o A356754 (Python) %o A356754 def T(n, k): return ((n-1) * (n+2))//2 + 2*k %o A356754 for n in range(1, 12): %o A356754 for k in range(1,(n+1)): print(T(n,k), end = ', ') %o A356754 (Python) %o A356754 # Indexed as a linear sequence. %o A356754 def a000124(n): return n*(n+1)//2 + 1 %o A356754 def a(n): %o A356754 l = m = 0 %o A356754 for k in range(1,n): %o A356754 lc = a000124(k - 1) %o A356754 if n >= lc: %o A356754 l = lc %o A356754 m = k %o A356754 else: break %o A356754 return n + m + (n - l) %Y A356754 Cf. A000124, A004120, A046691, A051938, A055999, A056000, A155212, A167487, A167499, A167614, A246172, A334563, A356288. %K A356754 nonn,tabl,easy %O A356754 1,1 %A A356754 _Torlach Rush_, Aug 25 2022