cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356759 Bit-reverse the odd part of the dual Zeckendorf representation of n: a(n) = A022290(A057889(A003754(n+1))).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 11, 12, 15, 17, 13, 16, 14, 18, 19, 20, 25, 22, 28, 30, 21, 26, 29, 23, 27, 24, 31, 32, 33, 41, 46, 36, 43, 38, 49, 51, 34, 42, 37, 47, 50, 35, 44, 48, 39, 45, 40, 52, 53, 54, 67, 59, 75, 80, 56, 70, 77, 62, 72, 64, 83, 85, 55
Offset: 0

Views

Author

Rémy Sigrist, Aug 26 2022

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers, similar to A345201 and A356331.
The dual Zeckendorf (or lazy Fibonacci) representation expresses uniquely a number n as a sum of distinct positive Fibonacci numbers; these distinct Fibonacci numbers can be encoded in binary, and the corresponding binary encoding, A003754(n+1), cannot have two consecutive nonleading 0's.

Examples

			For n = 49:
- the dual Zeckendorf representation of 49 is "1111010",
- reversing its odd part ("111101"), we obtain "1011110",
- so a(49) = 39.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(a(n)) = n.
a(n) < A000045(k) iff n < A000045(k).