cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356767 Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes.

This page as a plain text file.
%I A356767 #11 Aug 28 2022 10:37:38
%S A356767 1518,2046,2226,2262,2418,2478,2618,2622,2814,2838,2886,3135,3927,
%T A356767 4170,4182,4386,4389,4746,4785,4935,5313,5394,5406,5478,5565,5655,
%U A356767 5838,5874,6018,6045,6222,6402,6438,6474,6486,6690,6699,6834,6846,6882,7293,7458,8106,8142
%N A356767 Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes.
%C A356767 Palindromic tetraprimes are A046394.
%C A356767 The corresponding sequence for three distinct primes is A270175.
%e A356767 1518 = 2*3*11*23 is a tetraprime. Its reversal 8151 = 3*11*13*19 is another tetraprime. Thus, 1518 is in this sequence.
%t A356767 Select[Range[10000],Transpose[ FactorInteger[FromDigits[Reverse[IntegerDigits[#]]]]][[2]] == {1, 1, 1, 1} && IntegerDigits[#] != Reverse[IntegerDigits[#]] && Transpose[FactorInteger[#]][[2]] == {1, 1, 1, 1} &]
%o A356767 (Python)
%o A356767 from sympy import factorint
%o A356767 def tetra(n): return list(factorint(n).values()) == [1, 1, 1, 1]
%o A356767 def ok(n):
%o A356767     if not tetra(n): return False
%o A356767     revn = int(str(n)[::-1])
%o A356767     return n != revn and tetra(revn)
%o A356767 print([k for k in range(9000) if ok(k)]) # _Michael S. Branicky_, Aug 27 2022
%Y A356767 Cf. A046394, A270175.
%K A356767 nonn,base
%O A356767 1,1
%A A356767 _Tanya Khovanova_, Aug 26 2022