This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356767 #11 Aug 28 2022 10:37:38 %S A356767 1518,2046,2226,2262,2418,2478,2618,2622,2814,2838,2886,3135,3927, %T A356767 4170,4182,4386,4389,4746,4785,4935,5313,5394,5406,5478,5565,5655, %U A356767 5838,5874,6018,6045,6222,6402,6438,6474,6486,6690,6699,6834,6846,6882,7293,7458,8106,8142 %N A356767 Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes. %C A356767 Palindromic tetraprimes are A046394. %C A356767 The corresponding sequence for three distinct primes is A270175. %e A356767 1518 = 2*3*11*23 is a tetraprime. Its reversal 8151 = 3*11*13*19 is another tetraprime. Thus, 1518 is in this sequence. %t A356767 Select[Range[10000],Transpose[ FactorInteger[FromDigits[Reverse[IntegerDigits[#]]]]][[2]] == {1, 1, 1, 1} && IntegerDigits[#] != Reverse[IntegerDigits[#]] && Transpose[FactorInteger[#]][[2]] == {1, 1, 1, 1} &] %o A356767 (Python) %o A356767 from sympy import factorint %o A356767 def tetra(n): return list(factorint(n).values()) == [1, 1, 1, 1] %o A356767 def ok(n): %o A356767 if not tetra(n): return False %o A356767 revn = int(str(n)[::-1]) %o A356767 return n != revn and tetra(revn) %o A356767 print([k for k in range(9000) if ok(k)]) # _Michael S. Branicky_, Aug 27 2022 %Y A356767 Cf. A046394, A270175. %K A356767 nonn,base %O A356767 1,1 %A A356767 _Tanya Khovanova_, Aug 26 2022