This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356772 #9 Jul 03 2025 12:59:02 %S A356772 1,2,5,34,329,3716,55777,1010206,21187049,511352272,13929248861, %T A356772 422450642054,14129873671069,516664310959720,20503766568423881, %U A356772 877759284120870526,40321132468408643153,1978363648482263649728,103262474042895179595061,5713315282015940379009862 %N A356772 E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} ( x^n + x*A(x) )^n / n!. %C A356772 More generally, the following sums are equal: %C A356772 (1) Sum_{n>=0} (p + q^n)^n * r^n/n!, %C A356772 (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!; %C A356772 here, q = x with p = x*A(x), r = 1. %H A356772 Paul D. Hanna, <a href="/A356772/b356772.txt">Table of n, a(n) for n = 0..200</a> %F A356772 E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies: %F A356772 (1) A(x) = Sum_{n>=0} ( x^n + x*A(x) )^n / n!. %F A356772 (2) A(x) = Sum_{n>=0} x^(n^2) * exp( x^(n+1) * A(x) ) / n!. %F A356772 a(n) ~ c * d^n * n! / n^(3/2), where d = 3.14614463757985697... and c = 1.454175198420213... - _Vaclav Kotesovec_, Jul 03 2025 %e A356772 E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 34*x^3/3! + 329*x^4/4! + 3716*x^5/5! + 55777*x^6/6! + 1010206*x^7/7! + 21187049*x^8/8! + 511352272*x^9/9! + 13929248861*x^10/10! + ... %e A356772 where %e A356772 A(x) = 1 + (x + x*A(x)) + (x^2 + x*A(x))^2/2! + (x^3 + x*A(x))^3/3! + (x^4 + x*A(x))^4/4! + (x^5 + x*A(x))^5/5! + ... + (x^n + x*A(x))^n/n! + ... %e A356772 also %e A356772 A(x) = exp(x*A(x)) + x*exp(x^2*A(x)) + x^4*exp(x^3*A(x))/2! + x^9*exp(x^4*A(x))/3! + x^16*exp(x^5*A(x))/4! + x^25*exp(x^6*A(x))/5! + ... + + x^(n^2)*exp(x^(n+1)*A(x))/n! + ... %e A356772 RELATED SERIES. %e A356772 exp(x*A(x)) = 1 + x + 5*x^2/2! + 28*x^3/3! + 269*x^4/4! + 3356*x^5/5! + 50257*x^6/6! + 915076*x^7/7! + 19427753*x^8/8! + 471310984*x^9/9! + 12892968701*x^10/10! + ... %e A356772 log(A(x)) = 2*x + x^2/2! + 20*x^3/3! + 126*x^4/4! + 1314*x^5/5! + 20460*x^6/6! + 347906*x^7/7! + 7181944*x^8/8! + 170606106*x^9/9! + 4577504760*x^10/10! + ... %e A356772 SPECIFIC VALUES. %e A356772 A(x = 1/4) = 1.8854569251645435475372616427080... %e A356772 A(x = 0.3) = 2.4910587821818158559566392662113... %e A356772 A(x = 1/3) diverges. %o A356772 (PARI) /* A(x) = Sum_{n>=0} ( x^n + x*A(x) )^n / n! */ %o A356772 {a(n) = my(A=1); for(i=1,n, A = sum(m=0,n, (x^m + x*A +x*O(x^n))^m/m! )); n!*polcoeff(A,n)} %o A356772 for(n=0,25,print1(a(n),", ")) %o A356772 (PARI) /* A(x) = Sum_{n>=0} x^(n^2) * exp(x^(n+1)*A(x))/n! */ %o A356772 {a(n) = my(A=1); for(i=1,n, A = sum(m=0,sqrtint(n), x^(m^2) * exp( x^(m+1)*A +x*O(x^n)) / m! )); n!*polcoeff(A,n)} %o A356772 for(n=0,25,print1(a(n),", ")) %Y A356772 Cf. A356773, A108459, A326090, A326091, A326261, A326009. %K A356772 nonn %O A356772 0,2 %A A356772 _Paul D. Hanna_, Aug 27 2022