This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356779 #9 Sep 13 2022 04:44:15 %S A356779 1,-7,9,60,-265,429,-189,-812,2925,-5732,6980,-4824,-198,10010,-32298, %T A356779 69768,-104651,107373,-72435,26422,19656,-115011,361763,-834900, %U A356779 1427679,-1797817,1641447,-1057446,454155,-69564,-298980,1307448,-4102104,9924525,-18599295 %N A356779 G.f.: Sum_{n=-oo..+oo} x^(n^2) * C(x)^(6*n-9), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). %H A356779 Paul D. Hanna, <a href="/A356779/b356779.txt">Table of n, a(n) for n = 0..2555</a> %F A356779 G.f. A(x) = Sum_{n>=0} a(n)*x^n may be obtained from the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). %F A356779 (1) A(x) = Sum_{n=-oo..+oo} x^(n^2) * C(x)^(6*n-9). %F A356779 (2) A(x) = 1/C(x)^9 * Product_{n>=1} (1 + x^(2*n-1)*C(x)^6) * (1 + x^(2*n-1)/C(x)^6) * (1 - x^(2*n)), by the Jacobi triple product identity. %F A356779 (3) A(x) = 1/C(x)^9 + Sum_{n>=1} x^(n^2) * (C(x)^(6*n-9) + 1/C(x)^(6*n+9)). %e A356779 G.f.: A(x) = 1 - 7*x + 9*x^2 + 60*x^3 - 265*x^4 + 429*x^5 - 189*x^6 - 812*x^7 + 2925*x^8 - 5732*x^9 + 6980*x^10 - 4824*x^11 - 198*x^12 + 10010*x^13 - 32298*x^14 + 69768*x^15 - 104651*x^16 + 107373*x^17 - 72435*x^18 + 26422*x^19 + 19656*x^20 - 115011*x^21 + 361763*x^22 - 834900*x^23 + 1427679*x^24 - 1797817*x^25 + ... %e A356779 such that %e A356779 A(x) = ... + x^16/C(x)^33 + x^9/C(x)^27 + x^4/C(x)^21 + x/C(x)^15 + 1/C(x)^9 + x/C(x)^3 + x^4*C(x)^3 + x^9*C(x)^9 + x^16*C(x)^15 + x^25*C(x)^21 + ... + x^(n^2)*C(x)^(6*n-9) + ... %e A356779 where the Catalan function C(x) = (1 - sqrt(1-4*x))/(2*x) begins %e A356779 C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ... %e A356779 RELATED TABLE. %e A356779 This sequence may be written in the form of an irregular triangle that begins: %e A356779 1, %e A356779 -7, 9, 60, %e A356779 -265, 429, -189, -812, 2925, %e A356779 -5732, 6980, -4824, -198, 10010, -32298, 69768, %e A356779 -104651, 107373, -72435, 26422, 19656, -115011, 361763, -834900, 1427679, %e A356779 -1797817, 1641447, -1057446, 454155, -69564, -298980, 1307448, -4102104, 9924525, -18599295, 26936910, %e A356779 -29910464, 25109975, -15599955, 6941244, -2013544, -324558, 3717882, -14942570, 46955661, -117679100, 236030652, -378658800, 483841800, %e A356779 ... %o A356779 (PARI) /* By Definition: */ %o A356779 {a(n) = my(A, C=1/x*serreverse(x-x^2 +O(x^(n+2))), M=ceil(sqrt(n+1))); %o A356779 A = sum(m=-M, M, x^(m^2) * C^(6*m-9) ); polcoeff(A, n)} %o A356779 for(n=0, 50, print1(a(n), ", ")) %Y A356779 Cf. A356777, A356778, A355341, A355345, A034807, A000108. %K A356779 sign %O A356779 0,2 %A A356779 _Paul D. Hanna_, Sep 08 2022