cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356785 E.g.f. satisfies log(A(x)) = x * (exp(x*A(x)) - 1) * A(x).

This page as a plain text file.
%I A356785 #23 Sep 21 2024 13:25:23
%S A356785 1,0,2,3,64,365,7356,85687,1920752,34821369,905128300,22172123171,
%T A356785 672107454888,20552960420005,721088019634724,26257726364294895,
%U A356785 1053711696230404576,44336326818388565105,2010106841636689325532,95747319823049127621019
%N A356785 E.g.f. satisfies log(A(x)) = x * (exp(x*A(x)) - 1) * A(x).
%H A356785 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A356785 a(n) = n! * Sum_{k=0..floor(n/2)} (n+1)^(k-1) * Stirling2(n-k,k)/(n-k)!.
%F A356785 E.g.f.: (1/x) * Series_Reversion( x*exp(x*(1 - exp(x))) ). - _Seiichi Manyama_, Sep 21 2024
%t A356785 nmax = 19; A[_] = 1;
%t A356785 Do[A[x_] = Exp[x*(Exp[x*A[x]]-1)*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
%t A356785 CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 04 2024 *)
%o A356785 (PARI) a(n) = n!*sum(k=0, n\2, (n+1)^(k-1)*stirling(n-k, k, 2)/(n-k)!);
%Y A356785 Cf. A349560, A356788, A356789.
%Y A356785 Cf. A184949, A349557, A355843.
%K A356785 nonn
%O A356785 0,3
%A A356785 _Seiichi Manyama_, Aug 27 2022