This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356791 #55 Sep 24 2022 21:51:04 %S A356791 13,17,107,149,337,1009,1069,1109,1409,1499,1559,3257,3347,3407,3467, %T A356791 3527,3697,3767,10009,10429,10739,10859,10939,11057,11149,11159,11257, %U A356791 11497,11657,11677,11717,11897,11959,13759,13829,14029,14479,14549,15149,15299,15649,30367,30557,31267,31307,32257 %N A356791 Emirps p such that R(p) > p and R(p) mod p is prime, where R(p) is the reversal of p. %C A356791 All terms start with digit 1 or 3. %C A356791 It appears that the only term that does not end with digit 7 or 9 is 13. %H A356791 Robert Israel, <a href="/A356791/b356791.txt">Table of n, a(n) for n = 1..10000</a> %e A356791 a(3) = 107 is a term because it is prime, its reversal 701 is prime, and 701 mod 107 = 59 is prime. %p A356791 rev:= proc(n) local K,i; %p A356791 K:= convert(n,base,10); %p A356791 add(K[-i]*10^(i-1),i=1..nops(K)) %p A356791 end proc: %p A356791 filter:= proc(p) local q; %p A356791 if not isprime(p) then return false fi; %p A356791 q:= rev(p); %p A356791 q > p and isprime(q) and isprime(q mod p) %p A356791 end proc: %p A356791 select(filter, [seq(i,i=3..10^5,2)]); %t A356791 q[p_] := Module[{r = IntegerReverse[p]}, r > p && PrimeQ[r] && PrimeQ[Mod[r, p]]]; Select[Prime[Range[3500]], q] (* _Amiram Eldar_, Sep 18 2022 *) %o A356791 (Python) %o A356791 from sympy import isprime %o A356791 def ok(n): %o A356791 r = int(str(n)[::-1]) %o A356791 return r > n and isprime(n) and isprime(r) and isprime(r%n) %o A356791 print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Sep 18 2022 %Y A356791 Cf. A004086, A006567, A109308. %K A356791 nonn,base %O A356791 1,1 %A A356791 _J. M. Bergot_ and _Robert Israel_, Sep 18 2022