cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356793 Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.

This page as a plain text file.
%I A356793 #65 Sep 29 2022 22:05:29
%S A356793 1,6,5,6,1,8,4,6,5,3,9,5
%N A356793 Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.
%C A356793 Alternative definition: sum of squares of reciprocals of primes whose distance from the next prime is equal to 2.
%C A356793 Convergence table:
%C A356793    k       A001359(k)      Sum_{j=1..k} 1/A001359(j)^2
%C A356793 10000000   3285916169 0.165618465394273171950874120818
%C A356793 20000000   7065898967 0.165618465394707600197099741096
%C A356793 30000000  11044807451 0.165618465394836120901019351544
%C A356793 40000000  15151463321 0.165618465394895965582366015390
%C A356793 50000000  19358093939 0.165618465394930089884704869090
%C A356793 60000000  23644223231 0.165618465394951950670948192842
%C A356793 Using the Hardy-Littlewood prediction of the density of twin primes (see A347278), the contribution to the sum after the last entry in the table above can be estimated as 9.056*10^(-14), making the infinite sum ~= 0.16561846539504... . - _Hugo Pfoertner_, Sep 28 2022
%H A356793 Jeffrey P.S. Lay, <a href="https://arxiv.org/abs/1505.03589">Sign changes in Mertens' first and second theorems</a>, arXiv:1505.03589 [math.NT], 2015.
%H A356793 Mark B. Villarino, <a href="https://arxiv.org/abs/math/0504289">Mertens' Proof of Mertens' Theorem</a>, arXiv:math/0504289 [math.HO], 2005.
%H A356793 Marek Wolf, <a href="https://www.researchgate.net/publication/2346256_Generalized_Brun%27s_constants">Generalized Brun's constants</a>, IFTUWr 910/97 (1998), 1-15.
%H A356793 Marek Wolf, <a href="https://arxiv.org/abs/1102.0481">Some heuristics on the gaps between consecutive primes</a>, arXiv:1102.0481 [math.NT]. 2011.
%e A356793 0.165618465395...
%Y A356793 Cf. A006512, A065421, A077800, A078437, A085548, A096247, A160910, A194098, A209328, A209329, A242301, A242302, A242303, A242304, A306539, A342714.
%Y A356793 Cf. A347278.
%K A356793 nonn,cons,hard,more
%O A356793 0,2
%A A356793 _Artur Jasinski_, Sep 04 2022
%E A356793 Data extended to ...3, 9, 5 by _Hugo Pfoertner_, Sep 28 2022