This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356793 #65 Sep 29 2022 22:05:29 %S A356793 1,6,5,6,1,8,4,6,5,3,9,5 %N A356793 Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2. %C A356793 Alternative definition: sum of squares of reciprocals of primes whose distance from the next prime is equal to 2. %C A356793 Convergence table: %C A356793 k A001359(k) Sum_{j=1..k} 1/A001359(j)^2 %C A356793 10000000 3285916169 0.165618465394273171950874120818 %C A356793 20000000 7065898967 0.165618465394707600197099741096 %C A356793 30000000 11044807451 0.165618465394836120901019351544 %C A356793 40000000 15151463321 0.165618465394895965582366015390 %C A356793 50000000 19358093939 0.165618465394930089884704869090 %C A356793 60000000 23644223231 0.165618465394951950670948192842 %C A356793 Using the Hardy-Littlewood prediction of the density of twin primes (see A347278), the contribution to the sum after the last entry in the table above can be estimated as 9.056*10^(-14), making the infinite sum ~= 0.16561846539504... . - _Hugo Pfoertner_, Sep 28 2022 %H A356793 Jeffrey P.S. Lay, <a href="https://arxiv.org/abs/1505.03589">Sign changes in Mertens' first and second theorems</a>, arXiv:1505.03589 [math.NT], 2015. %H A356793 Mark B. Villarino, <a href="https://arxiv.org/abs/math/0504289">Mertens' Proof of Mertens' Theorem</a>, arXiv:math/0504289 [math.HO], 2005. %H A356793 Marek Wolf, <a href="https://www.researchgate.net/publication/2346256_Generalized_Brun%27s_constants">Generalized Brun's constants</a>, IFTUWr 910/97 (1998), 1-15. %H A356793 Marek Wolf, <a href="https://arxiv.org/abs/1102.0481">Some heuristics on the gaps between consecutive primes</a>, arXiv:1102.0481 [math.NT]. 2011. %e A356793 0.165618465395... %Y A356793 Cf. A006512, A065421, A077800, A078437, A085548, A096247, A160910, A194098, A209328, A209329, A242301, A242302, A242303, A242304, A306539, A342714. %Y A356793 Cf. A347278. %K A356793 nonn,cons,hard,more %O A356793 0,2 %A A356793 _Artur Jasinski_, Sep 04 2022 %E A356793 Data extended to ...3, 9, 5 by _Hugo Pfoertner_, Sep 28 2022