cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356799 Table read by antidiagonals: T(n,k) (n >= 2, k >= 1) is the number of regions formed in a regular 2n-gon by straight line segments when connecting the k+1 points that divide each side into k equal parts to the equivalent point on the side diagonally opposite.

This page as a plain text file.
%I A356799 #48 Aug 30 2022 09:41:12
%S A356799 1,4,13,9,24,25,16,55,48,41,25,66,105,70,61,36,121,144,171,108,85,49,
%T A356799 126,233,220,253,140,113,64,211,288,381,312,351,192,145,81,204,409,
%U A356799 450,565,448,465,234,181,100,325,480,671,636,785,608,595,300,221,121,300,633,760,997,924,1041,738,741,352,265
%N A356799 Table read by antidiagonals: T(n,k) (n >= 2, k >= 1) is the number of regions formed in a regular 2n-gon by straight line segments when connecting the k+1 points that divide each side into k equal parts to the equivalent point on the side diagonally opposite.
%C A356799 Many rows and columns in the table appear to be given by a quadratic in even and odd values of k and n; see the Formula section. The exceptions are for rows with n mod 6 = 0 for even k, and for columns with even k, formulas for which are unknown.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799.txt">Table for n=2..35, k=1..50</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799.jpg">Image for T(2,8) = 64</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_1.jpg">Image for T(3,6) = 126</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_2.jpg">Image for T(3,7) = 211</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_3.jpg">Image for T(4,8) = 480</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_4.jpg">Image for T(4,9) = 633</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_5.jpg">Image for T(6,12) = 2232</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_6.jpg">Image for T(6,13) = 3013</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_7.jpg">Image for T(10,10) = 5100</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_8.jpg">Image for T(10,11) = 6581</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_9.jpg">Image for T(18,1) = 613</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_10.jpg">Image for T(18,2) = 972</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_11.jpg">Image for T(18,3) = 2485</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_12.jpg">Image for T(18,4) = 3096</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_13.jpg">Image for T(18,5) = 5581</a>.
%H A356799 Scott R. Shannon, <a href="/A356799/a356799_14.jpg">Image for T(18,6) = 6444</a>.
%F A356799 T(2,k) = k^2.
%F A356799 Conjectured formula for the rows for odd values of k for n>=3:
%F A356799 T(n,k) = A000217(n-1)*k^2 + n^2*k + A000217(n-2) = (n^2 - n)*k^2/2 + n^2*k + (n^2 - 3n + 2)/2.
%F A356799 E.g., T(7,k) = A000217(6)*k^2 + 7^2*k + A000217(5) = 21k^2 + 49k + 15.
%F A356799 Conjectured formula for the rows for even values of k for n>=3:
%F A356799 For n mod 3 = 1 or n mod 3 = 2, T(n,k) = A000217(n-1)*k^2 + A265225(n-1)*k = (n^2 - n)*k^2/2 + (floor(n/2) + 1)*n*k.
%F A356799 E.g., T(10,k) = A000217(9)*k^2 + A265225(9)*k = 45k^2 + 60k.
%F A356799 For n mod 6 = 0, no formula is currently known.
%F A356799 For (n - 3) mod 6 = 0, T(n,k) = A000096(2n-3)*k^2/4 + A005563(n)*k/2 = (2n^2 - 3n)*k^2/4 + (n^2 + 2n)*k/2.
%F A356799 E.g., T(15,k) = 405k^2/4 + 255k/2.
%F A356799 Conjectured formula for the columns for odd values of k for n>=3:
%F A356799 T(n,k) = A001105((k+1)/2)*n^2 - A051890((k+1)/2)*n + 1 = (k^2 + 2k + 1)*n^2/2 - (k^2 + 3)*n/2 + 1.
%F A356799 E.g., T(n,9) =  50n^2 - 42n + 1.
%F A356799 Conjectured formula for T(n,2):
%F A356799 T(n,2) = 2*A249127(n) = 2*floor(3n/2)*n, for n>=3.
%F A356799 No formula is current known for the columns for even values of k for k>=4.
%e A356799 The table begins:
%e A356799     1,   4,    9,   16,   25,   36,   49,    64,    81,   100,   121,   144, ...
%e A356799    13,  24,   55,   66,  121,  126,  211,   204,   325,   300,   463,   414, ...
%e A356799    25,  48,  105,  144,  233,  288,  409,   480,   633,   720,   905,  1008, ...
%e A356799    41,  70,  171,  220,  381,  450,  671,   760,  1041,  1150,  1491,  1620, ...
%e A356799    61, 108,  253,  312,  565,  636,  997,  1056,  1549,  1596,  2221,  2232, ...
%e A356799    85, 140,  351,  448,  785,  924, 1387,  1568,  2157,  2380,  3095,  3360, ...
%e A356799   113, 192,  465,  608, 1041, 1248, 1841,  2112,  2865,  3200,  4113,  4512, ...
%e A356799   145, 234,  595,  738, 1333, 1512, 2359,  2556,  3673,  3870,  5275,  5454, ...
%e A356799   181, 300,  741,  960, 1661, 1980, 2941,  3360,  4581,  5100,  6581,  7200, ...
%e A356799   221, 352,  903, 1144, 2025, 2376, 3587,  4048,  5589,  6160,  8031,  8712, ...
%e A356799   265, 432, 1081, 1344, 2425, 2784, 4297,  4704,  6697,  7152,  9625, 10080, ...
%e A356799   313, 494, 1275, 1612, 2861, 3354, 5071,  5720,  7905,  8710, 11363, 12324, ...
%e A356799   365, 588, 1485, 1904, 3333, 3948, 5909,  6720,  9213, 10220, 13245, 14448, ...
%e A356799   421, 660, 1711, 2130, 3841, 4410, 6811,  7500, 10621, 11400, 15271, 16110, ...
%e A356799   481, 768, 1953, 2496, 4385, 5184, 7777,  8832, 12129, 13440, 17441, 19008, ...
%e A356799   545, 850, 2211, 2788, 4965, 5814, 8807,  9928, 13737, 15130, 19755, 21420, ...
%e A356799   613, 972, 2485, 3096, 5581, 6444, 9901, 10944, 15445, 16668, 22213, 23544, ...
%e A356799   .
%e A356799   .
%Y A356799 Cf. A000217, A265225, A000096, A000290, A005563, A001844, A001105, A051890, A249127, A356044.
%K A356799 nonn,tabl
%O A356799 2,2
%A A356799 _Scott R. Shannon_, Aug 28 2022