A356803 a(n) = product of prohibited prime factors of A354790(n).
1, 1, 2, 6, 15, 105, 385, 2310, 6006, 102102, 277134, 6374082, 16804398, 520936338, 3038795305, 66853496710, 190275336790, 7420738134810, 17897074325130, 769574195980590, 1903683537425670, 100895227483560510, 258818192240437830, 15787909726666707630, 36475515575402393490
Offset: 1
Keywords
Examples
a(1) = 1; a(2) = 1 since s(1) = 1, and (2-1)/2 is not an integer; a(3) = a(2) * s(2) / s((3-1)/2) = 1 * 2 / 1 = 2; a(4) = a(3) * s(3) = 2 * 3 = 6; a(5) = a(4) * s(4) / s((5-1)/2) = 6 * 5 / 2 = 15; a(6) = a(5) * s(5) = 15 * 7 = 105; a(7) = a(6) * s(6) / s((7-1)/2) = 105 * 11 / 3 = 385; etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..585
- Michael De Vlieger, Annotated plot of prime p | m at (n, pi(p)) for m = a(n) in blue and A354790(n) in red and n = 1..80.
- Michael De Vlieger, Plot of prime p | m at (n, pi(p)) for m = a(n) in cyan and A354790(n) in red and n = 1..1024.
Programs
-
Mathematica
Block[{s = Import["https://oeis.org/A354790/b354790.txt", "Data"][[1 ;; 26, -1]], ww, m = 1, t, w = 3, k = 3}, Reap[Do[m *= Times @@ FactorInteger[s[[If[# == 0, 1, #] &[i - 1]]]][[All, 1]]; If[IntegerQ[#] && # > 0, m /= Times @@ FactorInteger[s[[#]]][[All, 1]]] &[(i - 1)/2]; Sow[m], {i, Length[s] - 1}]][[-1, -1]] ]
Formula
a(n) = a(n-1) * s(n-1) / s((n-1)/2), where the last operation is only carried out iff (n-1)/2 is an integer.
Comments