cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356803 a(n) = product of prohibited prime factors of A354790(n).

Original entry on oeis.org

1, 1, 2, 6, 15, 105, 385, 2310, 6006, 102102, 277134, 6374082, 16804398, 520936338, 3038795305, 66853496710, 190275336790, 7420738134810, 17897074325130, 769574195980590, 1903683537425670, 100895227483560510, 258818192240437830, 15787909726666707630, 36475515575402393490
Offset: 1

Views

Author

Michael De Vlieger, Sep 06 2022

Keywords

Comments

Let s(n) = A354790(n), a squarefree number by definition. Prime p | s(n) implies p does not divide s(n+j), 1 <= j <= n. Therefore a(n) is the product of primes p that cannot divide s(n). a(n) = product of distinct primes that divide a(j) for floor((n+1)/2) <= j <= n-1. (After N. J. A. Sloane in A355057.)
Analogous to A355057.

Examples

			a(1) = 1;
a(2) = 1 since s(1) = 1, and (2-1)/2 is not an integer;
a(3) = a(2) * s(2) / s((3-1)/2) = 1 * 2 / 1 = 2;
a(4) = a(3) * s(3) = 2 * 3 = 6;
a(5) = a(4) * s(4) / s((5-1)/2) = 6 * 5 / 2 = 15;
a(6) = a(5) * s(5) = 15 * 7 = 105;
a(7) = a(6) * s(6) / s((7-1)/2) = 105 * 11 / 3 = 385; etc.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Import["https://oeis.org/A354790/b354790.txt", "Data"][[1 ;; 26, -1]], ww, m = 1, t, w = 3, k = 3}, Reap[Do[m *= Times @@ FactorInteger[s[[If[# == 0, 1, #] &[i - 1]]]][[All, 1]]; If[IntegerQ[#] && # > 0, m /= Times @@ FactorInteger[s[[#]]][[All, 1]]] &[(i - 1)/2]; Sow[m], {i, Length[s] - 1}]][[-1, -1]] ]

Formula

a(n) = a(n-1) * s(n-1) / s((n-1)/2), where the last operation is only carried out iff (n-1)/2 is an integer.