cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356817 a(n) = Sum_{k=0..n} (-1)^k * (k*n-1)^(n-k) * binomial(n,k).

This page as a plain text file.
%I A356817 #11 Aug 29 2022 16:36:01
%S A356817 1,-2,0,1,144,4143,110368,2535475,13299968,-5169863825,-639341093376,
%T A356817 -59073970497885,-4677854594527232,-276406098219258425,
%U A356817 2399871442122924032,5163244810691492730907,1331213942683118587674624,262517264591996332314037215
%N A356817 a(n) = Sum_{k=0..n} (-1)^k * (k*n-1)^(n-k) * binomial(n,k).
%F A356817 a(n) = n! * [x^n] exp( -x * (exp(n * x) + 1) ).
%F A356817 a(n) = [x^n] Sum_{k>=0} (-x)^k / (1 - (n*k-1)*x)^(k+1).
%o A356817 (PARI) a(n) = sum(k=0, n, (-1)^k*(k*n-1)^(n-k)*binomial(n, k));
%Y A356817 Cf. A356815, A356816, A356818.
%Y A356817 Cf. A356806, A356811, A356814.
%K A356817 sign
%O A356817 0,2
%A A356817 _Seiichi Manyama_, Aug 29 2022