This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356829 #16 Feb 16 2025 08:34:03 %S A356829 0,0,8,82,512,2644,12364,54598,232772,970520,3988624,16239066, %T A356829 65709256,264814140,1064414100,4271035662,17118683020,68563527616, %U A356829 274481537112,1098506723042,4395504614544,17585769696164,70352578566620,281434319454038,1125797816327892 %N A356829 Number of vertex cuts in the n-Möbius ladder. %C A356829 Sequence extended to n = 1 using formula. %H A356829 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a> %H A356829 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCut.html">Vertex Cut</a> %H A356829 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (10,-35,48,-11,-22,7,4). %F A356829 a(n) = 2^(2*n) - A286185(n) - 1. - _Pontus von Brömssen_, Aug 30 2022 %F A356829 a(n) = 4^n + n - LucasL(n, 2) - 3*n*Fibonacci(n, 2). %F A356829 a(n) = 10*a(n-1) - 35*a(n-2) + 48*a(n-3) - 11*a(n-4) - 22*a(n-5) + 7*a(n-6) + 4*a(n-7). %F A356829 G.f.: 2*x^3*(-4-x+14*x^2-5*x^3+2*x^4)/((-1+x)^2*(-1+4*x)*(-1+2*x+x^2)^2). %t A356829 Table[4^n + n - LucasL[n, 2] - 3 n Fibonacci[n, 2], {n, 20}] %t A356829 LinearRecurrence[{10, -35, 48, -11, -22, 7, 4}, {0, 0, 8, 82, 512, 2644, 12364}, 20] %t A356829 CoefficientList[Series[2 x^2 (-4 - x + 14 x^2 - 5 x^3 + 2 x^4)/((-1 + x)^2 (-1 + 4 x) (-1 + 2 x + x^2)^2), {x, 0, 20}], x] %Y A356829 Cf. A286185. %K A356829 nonn %O A356829 1,3 %A A356829 _Eric W. Weisstein_, Aug 30 2022 %E A356829 More terms from _Pontus von Brömssen_, Aug 30 2022