This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356834 #39 Sep 16 2022 12:13:56 %S A356834 1,1,4,33,448,8105,192576,5946913,226097152,10389920913,571788928000, %T A356834 36818407010561,2741300619657216,234014330510734969, %U A356834 22620660476040331264,2457467449742570271105,298061856229112792743936,40058727579693211737837857 %N A356834 a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^n/(n - 2*k)!. %F A356834 E.g.f.: Sum_{k>=0} (k * x)^k / (k! * (1 - (k * x)^2)). %p A356834 f:= proc(n) local k; n! * add((n-2*k)^n/(n-2*k)!,k=0..floor(n/2)) end proc: %p A356834 map(f, [$0..20]); # _Robert Israel_, Sep 16 2022 %t A356834 a[n_] := n! * Sum[(n - 2*k)^n/(n - 2*k)!, {k, 0, Floor[n/2]} ]; a[0] = 1; Array[a, 18, 0] (* _Amiram Eldar_, Sep 16 2022 *) %o A356834 (PARI) a(n) = n!*sum(k=0, n\2, (n-2*k)^n/(n-2*k)!); %o A356834 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-(k*x)^2))))) %Y A356834 Cf. A256016, A357174. %Y A356834 Cf. A352082, A357146. %K A356834 nonn %O A356834 0,3 %A A356834 _Seiichi Manyama_, Sep 16 2022