This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356841 #11 Sep 01 2022 19:48:36 %S A356841 0,1,2,3,4,5,6,7,8,10,11,13,14,15,16,18,20,21,22,23,26,27,29,30,31,32, %T A356841 36,37,38,41,42,43,44,45,46,47,50,52,53,54,55,58,59,61,62,63,64,68,72, %U A356841 74,75,77,78,82,83,84,85,86,87,89,90,91,92,93,94,95,101 %N A356841 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless). %C A356841 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A356841 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A356841 The terms and their corresponding standard compositions begin: %e A356841 0: () %e A356841 1: (1) %e A356841 2: (2) %e A356841 3: (1,1) %e A356841 4: (3) %e A356841 5: (2,1) %e A356841 6: (1,2) %e A356841 7: (1,1,1) %e A356841 8: (4) %e A356841 10: (2,2) %e A356841 11: (2,1,1) %e A356841 13: (1,2,1) %e A356841 14: (1,1,2) %e A356841 15: (1,1,1,1) %e A356841 16: (5) %e A356841 18: (3,2) %e A356841 20: (2,3) %e A356841 21: (2,2,1) %t A356841 nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]]; %t A356841 stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A356841 Select[Range[0,100],nogapQ[stc[#]]&] %Y A356841 See link for sequences related to standard compositions. %Y A356841 An unordered version is A073491, complement A073492. %Y A356841 These compositions are counted by A107428. %Y A356841 The complement is A356842. %Y A356841 The non-initial case is A356843, unordered A356845. %Y A356841 A356230 ranks gapless factorization lengths, firsts A356603. %Y A356841 A356233 counts factorizations into gapless numbers. %Y A356841 A356844 ranks compositions with at least one 1. %Y A356841 Cf. A053251, A055932, A073493, A132747, A137921, A286470, A356224/A356225. %K A356841 nonn %O A356841 1,3 %A A356841 _Gus Wiseman_, Aug 31 2022