This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356843 #8 Sep 01 2022 19:48:26 %S A356843 2,4,8,10,16,18,20,32,36,42,64,68,72,74,82,84,128,136,146,148,164,170, %T A356843 256,264,272,274,276,290,292,296,298,324,328,330,338,340,512,528,548, %U A356843 580,584,586,594,596,658,660,676,682,1024,1040,1056,1092,1096,1098 %N A356843 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless) but contains no 1's. %C A356843 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A356843 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A356843 Complement of A333217 in A356841. %e A356843 The terms together with their corresponding standard compositions begin: %e A356843 2: (2) %e A356843 4: (3) %e A356843 8: (4) %e A356843 10: (2,2) %e A356843 16: (5) %e A356843 18: (3,2) %e A356843 20: (2,3) %e A356843 32: (6) %e A356843 36: (3,3) %e A356843 42: (2,2,2) %e A356843 64: (7) %e A356843 68: (4,3) %e A356843 72: (3,4) %e A356843 74: (3,2,2) %e A356843 82: (2,3,2) %e A356843 84: (2,2,3) %t A356843 nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]]; %t A356843 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A356843 Select[Range[100],!MemberQ[stc[#],1]&&nogapQ[stc[#]]&] %Y A356843 See link for sequences related to standard compositions. %Y A356843 A subset of A022340. %Y A356843 These compositions are counted by A251729. %Y A356843 The unordered version (using Heinz numbers of partitions) is A356845. %Y A356843 A333217 ranks complete compositions. %Y A356843 A356230 ranks gapless factorization lengths, firsts A356603. %Y A356843 A356233 counts factorizations into gapless numbers. %Y A356843 A356841 ranks gapless compositions, counted by A107428. %Y A356843 A356842 ranks non-gapless compositions, counted by A356846. %Y A356843 A356844 ranks compositions with at least one 1. %Y A356843 Cf. A053251, A055932, A073491, A073492, A073493, A137921, A356224/A356225. %K A356843 nonn %O A356843 1,1 %A A356843 _Gus Wiseman_, Sep 01 2022