This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356844 #9 Sep 03 2022 12:20:22 %S A356844 1,3,5,6,7,9,11,12,13,14,15,17,19,21,22,23,24,25,26,27,28,29,30,31,33, %T A356844 35,37,38,39,41,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60, %U A356844 61,62,63,65,67,69,70,71,73,75,76,77,78,79,81,83,85,86,87 %N A356844 Numbers k such that the k-th composition in standard order contains at least one 1. Numbers that are odd or whose binary expansion contains at least two adjacent 1's. %C A356844 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A356844 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A356844 Union of A005408 and A004780. %e A356844 The terms, binary expansions, and standard compositions: %e A356844 1: 1 (1) %e A356844 3: 11 (1,1) %e A356844 5: 101 (2,1) %e A356844 6: 110 (1,2) %e A356844 7: 111 (1,1,1) %e A356844 9: 1001 (3,1) %e A356844 11: 1011 (2,1,1) %e A356844 12: 1100 (1,3) %e A356844 13: 1101 (1,2,1) %e A356844 14: 1110 (1,1,2) %e A356844 15: 1111 (1,1,1,1) %e A356844 17: 10001 (4,1) %e A356844 19: 10011 (3,1,1) %e A356844 21: 10101 (2,2,1) %e A356844 22: 10110 (2,1,2) %e A356844 23: 10111 (2,1,1,1) %e A356844 24: 11000 (1,4) %e A356844 25: 11001 (1,3,1) %e A356844 26: 11010 (1,2,2) %e A356844 27: 11011 (1,2,1,1) %e A356844 28: 11100 (1,1,3) %e A356844 29: 11101 (1,1,2,1) %e A356844 30: 11110 (1,1,1,2) %e A356844 31: 11111 (1,1,1,1,1) %t A356844 Select[Range[0,100],OddQ[#]||MatchQ[IntegerDigits[#,2],{___,1,1,___}]&] %Y A356844 See link for sequences related to standard compositions. %Y A356844 The case beginning with 1 is A004760, complement A004754. %Y A356844 The complement is A022340. %Y A356844 These compositions are counted by A099036, complement A212804. %Y A356844 The case covering an initial interval is A333217. %Y A356844 The gapless but non-initial version is A356843, unordered A356845. %Y A356844 Cf. A004780, A005408, A055932, A073492, A073493, A132747. %K A356844 nonn %O A356844 1,2 %A A356844 _Gus Wiseman_, Sep 02 2022