This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356845 #7 Sep 03 2022 12:19:58 %S A356845 1,3,5,7,9,11,13,15,17,19,23,25,27,29,31,35,37,41,43,45,47,49,53,59, %T A356845 61,67,71,73,75,77,79,81,83,89,97,101,103,105,107,109,113,121,125,127, %U A356845 131,135,137,139,143,149,151,157,163,167,169,173,175,179,181,191 %N A356845 Odd numbers with gapless prime indices. %C A356845 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A356845 A sequence is gapless if it covers an interval of positive integers. %e A356845 The terms together with their prime indices begin: %e A356845 1: {} %e A356845 3: {2} %e A356845 5: {3} %e A356845 7: {4} %e A356845 9: {2,2} %e A356845 11: {5} %e A356845 13: {6} %e A356845 15: {2,3} %e A356845 17: {7} %e A356845 19: {8} %e A356845 23: {9} %e A356845 25: {3,3} %e A356845 27: {2,2,2} %e A356845 29: {10} %e A356845 31: {11} %e A356845 35: {3,4} %e A356845 37: {12} %e A356845 41: {13} %e A356845 43: {14} %t A356845 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356845 nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]]; %t A356845 Select[Range[1,100,2],nogapQ[primeMS[#]]&] %Y A356845 Consists of the odd terms of A073491. %Y A356845 These partitions are counted by A264396. %Y A356845 The strict case is A294674, counted by A136107. %Y A356845 The version for compositions is A356843, counted by A251729. %Y A356845 A001221 counts distinct prime factors, sum A001414. %Y A356845 A056239 adds up prime indices, row sums of A112798, lengths A001222. %Y A356845 A356069 counts gapless divisors, initial A356224 (complement A356225). %Y A356845 A356230 ranks gapless factorization lengths, firsts A356603. %Y A356845 A356233 counts factorizations into gapless numbers. %Y A356845 Cf. A003963, A034296, A055932, A073493, A107428, A287170, A289508, A325160, A356231, A356234, A356841. %K A356845 nonn %O A356845 1,2 %A A356845 _Gus Wiseman_, Sep 03 2022