This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356856 #13 Aug 31 2023 14:58:48 %S A356856 2,3,5,7,11,13,19,29,31,37,43,53,59,61,67,71,79,83,101,107,109,127, %T A356856 131,139,149,151,163,173,179,181,191,197,199,211,223,227,229,239,269, %U A356856 271,283,293,317,331,347,349,367,373,379,389,419,421,443,461,463,467,487 %N A356856 Primes p such that the least positive primitive root of p (A001918) divides p-1. %C A356856 If Artin's conjecture is true then this sequence is infinite because it contains all primes with primitive root 2. %C A356856 Conjecture: This sequence has density ~0.548 in the prime numbers. %H A356856 Robert Israel, <a href="/A356856/b356856.txt">Table of n, a(n) for n = 1..10000</a> %e A356856 71 is a term because the least primitive root of the prime number 71 is 7 and 7 divides 71 - 1 = 70. %p A356856 filter:= proc(p) local r; %p A356856 if not isprime(p) then return false fi; %p A356856 r:= NumberTheory:-PrimitiveRoot(p); %p A356856 p-1 mod r = 0 %p A356856 end proc: %p A356856 select(filter, [2,seq(i,i=3..1000,2)]); # _Robert Israel_, Aug 31 2023 %t A356856 Select[Prime@Range@100, Mod[# - 1, PrimitiveRoot@#] == 0 &] %Y A356856 Cf. A006093, A001918. %K A356856 nonn %O A356856 1,1 %A A356856 _Giorgos Kalogeropoulos_, Aug 31 2022