cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356871 Primitive coreful abundant numbers (second definition): coreful abundant numbers (A308053) that are powerful numbers (A001694).

Original entry on oeis.org

72, 108, 144, 200, 216, 288, 324, 400, 432, 576, 648, 784, 800, 864, 900, 972, 1000, 1152, 1296, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, 2304, 2592, 2700, 2704, 2744, 2916, 3136, 3200, 3456, 3528, 3600, 3872, 3888, 4000, 4356, 4500, 4608, 4900, 5000, 5184
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2022

Keywords

Comments

For squarefree numbers k, csigma(k) = k, where csigma(k) is the sum of the coreful divisors of k (A057723). Thus, if m is a term (csigma(m) > 2*m) and k is a squarefree number coprime to k, then csigma(k*m) = csigma(k) * csigma(m) = k * csigma(m) > 2*k*m, so k*m is a coreful abundant number. Therefore, the sequence of coreful abundant numbers (A308053) can be generated from this sequence by multiplying with coprime squarefree numbers. The asymptotic density of the coreful abundant numbers can be calculated from this sequence (see comment in A308053).

Examples

			72 is a term since csigma(72) = 168 > 2 * 72, and 72 = 2^3 * 3^2 is powerful.
		

Crossrefs

Intersection of A001694 and A308053.
A339940 is a subsequence.
Cf. A057723.
Similar sequences: A307959, A328136.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; s[1] = 1; s[n_] := If[AllTrue[(fct = FactorInteger[n])[[;;, 2]], #>1 &], Times @@ f @@@ fct, 0]; seq={}; Do[If[s[n] > 2*n, AppendTo[seq, n]], {n, 1, 5000}]; seq