This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356877 #41 Oct 18 2022 01:43:03 %S A356877 0,23,111,479,1471,6015,24319,28415,114175,457727,490495,1964031, %T A356877 6025215,8122367,32497663,98549759,132104191,528449535,1593769983, %U A356877 1862205439,7448952831,25635323903,29930291199,119721689087,411242070015,479961546751,514321285119,2057287237631,7687987265535 %N A356877 a(n) is the least number k such that (the binary weight of k) - (the binary weight of k^2) = n. %C A356877 Note that the terms of A260986 with n > 1 can all be found here. Terms here that are not in A260986 have the property not to be a record value of the ratio (binary weight k) / (binary weight k^2). %C A356877 Observation: The difference of two neighboring terms is a multiple of 2^(number of the ones after the last zero in binary expression of the smaller term). %H A356877 K. B. Stolarsky, <a href="http://dx.doi.org/10.1090/S0002-9939-1978-0495823-5">The binary digits of a power</a>, Proc. Amer. Math. Soc. 71 (1978), pp. 1-5. %e A356877 ----------------------------------------------------------------------------- %e A356877 n k k^2 binary k binary k^2 %e A356877 ----------------------------------------------------------------------------- %e A356877 0 0 0 0 0 %e A356877 1 23 529 10111 1000010001 %e A356877 2 111 12321 1101111 11000000100001 %e A356877 3 479 229441 111011111 111000000001000001 %e A356877 4 1471 2163841 10110111111 1000010000010010000001 %e A356877 5 6015 36180225 1011101111111 10001010000001000100000001 %e A356877 6 24319 591413761 101111011111111 100011010000000100001000000001 %e A356877 7 28415 807412225 110111011111111 110000001000000010001000000001 %e A356877 8 114175 13035930625 11011110111111111 1100001001000000001000010000000001 %t A356877 a[0] = 0; a[n_] := a[n] = Module[{step = If[n == 1, 1, 2^Length[Split[IntegerDigits[a[n - 1], 2]][[-1]]]], k = a[n - 1]}, While[DigitCount[k, 2, 1] - DigitCount[k^2, 2, 1] != n, k += step]; k]; Array[a, 23, 0] (* _Amiram Eldar_, Oct 14 2022 *) %o A356877 (PARI) a(n) = my(k=0); while(hammingweight(k) - hammingweight(k^2) != n, k++); k; \\ _Michel Marcus_, Oct 14 2022 %o A356877 (Python) %o A356877 A356877 = [0] %o A356877 for n in range(1,29): %o A356877 s, k = -1, A356877[-1] %o A356877 while bin(A356877[-1])[s] == "1": s -= 1 %o A356877 while bin(k)[2:].count("1")-bin(k**2)[2:].count("1") != n: k += 2**(abs(s)-1) %o A356877 A356877.append(k) %o A356877 print(A356877) %Y A356877 Cf. A000120, A159918, A260986, A357750. %K A356877 nonn,base %O A356877 0,2 %A A356877 _Karl-Heinz Hofmann_, Oct 10 2022