cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356880 Squares that can be expressed as the sum of two powers of two (2^x + 2^y).

This page as a plain text file.
%I A356880 #50 Sep 25 2022 09:34:29
%S A356880 4,9,16,36,64,144,256,576,1024,2304,4096,9216,16384,36864,65536,
%T A356880 147456,262144,589824,1048576,2359296,4194304,9437184,16777216,
%U A356880 37748736,67108864,150994944,268435456,603979776,1073741824,2415919104,4294967296,9663676416,17179869184
%N A356880 Squares that can be expressed as the sum of two powers of two (2^x + 2^y).
%C A356880 If x is even, y = x + 3; if x is odd, y = x.
%C A356880 Proof for odd x: (2^odd + 2^odd) = 2^(odd + 1) = 2^even --> must be a square.
%C A356880 Proof for even x: 2^even + 2^(even + 3) = 1*(2^even) + (2^even * 2^3) = 1*(2^even) + (2^even * 8) = 1*(2^even) + 8*(2^even) = 9*(2^even); since 9 is a square and 2^even is a square, the multiplication result must be a square too.
%C A356880 And 9 is the only square that can be written as 1 + a power of 2.
%C A356880 Note that a(n) = A272711(n+1) for n=1..23, but beyond it differs more and more.
%H A356880 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,4).
%F A356880 a(n) = A029744(n+1)^2.
%F A356880 a(n) = 9 * 2^(n-2) if n is even (see A002063).
%F A356880 a(n) = 2^(n+1) if n is odd (see A000302).
%F A356880 From _Stefano Spezia_, Sep 09 2022: (Start)
%F A356880 G.f.: x*(4 + 9*x)/(1 - 4*x^2).
%F A356880 E.g.f.: (9*(cosh(2*x) - 1) + 8*sinh(2*x))/4. (End)
%e A356880 2^4 + 2^7 = 144, a square, thus 144 is a term.
%p A356880 seq(`if`(n::even, 9*2^(n-2), 2^(n+1)),n=1..50); # _Robert Israel_, Sep 15 2022
%t A356880 Select[Range[2, 2^17]^2, DigitCount[#, 2, 1] <= 2 &] (* _Amiram Eldar_, Sep 03 2022 *)
%o A356880 (Python)
%o A356880 def A356880(n):
%o A356880     if n % 2 == 0: return 9*2**(n-2)
%o A356880     else: return 2**(n+1)
%o A356880 (PARI) a(n) = if (n%2, 2^(n+1), 9*2^(n-2)); \\ _Michel Marcus_, Sep 15 2022
%Y A356880 Cf. A029744, A000302, A002063.
%Y A356880 Intersection of A000290 and A048645\{1}.
%Y A356880 Cf. A272711, A270473 (squares that can be expressed as 3^x + 3^y).
%Y A356880 Cf. A220221.
%K A356880 nonn,easy
%O A356880 1,1
%A A356880 _Karl-Heinz Hofmann_, Sep 02 2022