This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356881 #11 Feb 22 2024 20:11:30 %S A356881 202,282,484,858,888,21912,22722,23832,24642,24842,25752,26662,26762, %T A356881 26862,26962,27672,27772,27872,27972,28482,28682,28782,28882,28982, %U A356881 29692,29792,29892,29992,40704,41514,41614,41814,42624,42824,42924,43434,43734 %N A356881 Palindromes that can be written in more than one way as the sum of two palindromic primes. %C A356881 This sequence doesn't contain any numbers with an even number of digits, see proof in A356824. %C A356881 Subsequence of A356824. %C A356881 Supersequence of A356854, which requires the two palindromic primes to be distinct. For example, 202, 24842, and 28682 are in this sequence but not in A356854. %C A356881 All numbers in this sequence are even. Proof: any two consecutive multi-digit palindromes differ by at least 10, so larger palindromes can't be the sum of a palindromic prime and 2. Thus, each term is the sum of two odd numbers. %e A356881 282 can be expressed as the sum of two palindromic primes in two ways: 282 = 101 + 181 = 131 + 151. Thus, 282 is in this sequence. Similarly, 202 = 101 + 101 = 11 + 191. %t A356881 q := Select[Range[50000], PalindromeQ[#] && PrimeQ[#] &]Sort[Transpose[Select[Tally[ Flatten[Table[ q[[n]] + q[[m]], {n, Length[q]}, {m, n, Length[q]}]]],PalindromeQ[#[[1]]] && #[[2]] > 1 &]][[1]]] %o A356881 (Python) %o A356881 from sympy import isprime %o A356881 from itertools import product %o A356881 def ispal(n): s = str(n); return s == s[::-1] %o A356881 def oddpals(d): # generator of odd palindromes with d digits %o A356881 if d == 1: yield from [1, 3, 5, 7, 9]; return %o A356881 for first in "13579": %o A356881 for p in product("0123456789", repeat=(d-2)//2): %o A356881 left = "".join(p); right = left[::-1] %o A356881 for mid in [[""], "0123456789"][d%2]: %o A356881 yield int(first + left + mid + right + first) %o A356881 def auptod(dd): %o A356881 N, alst, pp, once, twice = 10**dd, [], [2, 3, 5, 7, 11], set(), set() %o A356881 pp += [p for d in range(3, dd+1, 2) for p in oddpals(d) if isprime(p)] %o A356881 sums = (p+q for p in pp for q in pp if p<=q and p+q<N and ispal(p+q)) %o A356881 for s in sums: %o A356881 if s in once: twice.add(s) %o A356881 else: once.add(s) %o A356881 return sorted(twice) %o A356881 print(auptod(5)) # _Michael S. Branicky_, Sep 02 2022 %Y A356881 Cf. A356824, A356854. %K A356881 nonn,base %O A356881 1,1 %A A356881 _Tanya Khovanova_, Sep 02 2022