cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356892 E.g.f. satisfies log(A(x)) = x^3 * (exp(x * A(x)) - 1) * A(x).

This page as a plain text file.
%I A356892 #38 Sep 12 2022 03:05:12
%S A356892 1,0,0,0,24,60,120,210,101136,1089144,7409520,39917790,4097460840,
%T A356892 100410712116,1474154203704,16356956618730,786764261166240,
%U A356892 30867868254267120,778327514455987296,14658714575197061814,522720977799308061240,25075479032600008569900
%N A356892 E.g.f. satisfies log(A(x)) = x^3 * (exp(x * A(x)) - 1) * A(x).
%F A356892 a(n) = n! * Sum_{k=0..floor(n/4)} (n-2*k+1)^(k-1) * Stirling2(n-3*k,k)/(n-3*k)!.
%t A356892 m = 22; (* number of terms *)
%t A356892 A[_] = 0;
%t A356892 Do[A[x_] = Exp[x^3*(Exp[x*A[x]] - 1)*A[x]] + O[x]^m // Normal, {m}];
%t A356892 CoefficientList[A[x], x]*Range[0, m-1]! (* _Jean-François Alcover_, Sep 12 2022 *)
%o A356892 (PARI) a(n) = n!*sum(k=0, n\4, (n-2*k+1)^(k-1)*stirling(n-3*k, k, 2)/(n-3*k)!);
%Y A356892 Cf. A349557, A356785, A355508.
%Y A356892 Cf. A356963.
%K A356892 nonn
%O A356892 0,5
%A A356892 _Seiichi Manyama_, Sep 07 2022