This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356895 #8 Sep 05 2022 05:24:36 %S A356895 1,1,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6, %T A356895 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, %U A356895 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 %N A356895 a(n) is the length of the maximal tribonacci representation of n (A352103). %H A356895 Amiram Eldar, <a href="/A356895/b356895.txt">Table of n, a(n) for n = 0..10000</a> %F A356895 a(n) = A352104(n) + A356894(n). %F A356895 a(n) ~ log(n)/log(c), where c is the tribonacci constant (A058265). %e A356895 n a(n) A352103(n) %e A356895 - ---- ---------- %e A356895 0 1 0 %e A356895 1 1 1 %e A356895 2 2 10 %e A356895 3 2 11 %e A356895 4 3 100 %e A356895 5 3 101 %e A356895 6 3 110 %e A356895 7 3 111 %e A356895 8 4 1001 %e A356895 9 4 1010 %t A356895 t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; a[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 1, Length[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0] %Y A356895 Cf. A352103, A352104, A356894. %Y A356895 Similar sequences: A070939, A072649, A095791, A278044. %K A356895 nonn,base %O A356895 0,3 %A A356895 _Amiram Eldar_, Sep 03 2022