A356897 Nonnegative numbers whose maximal tribonacci representation (A352103) ends in an odd number of 1's.
1, 5, 7, 8, 12, 18, 20, 21, 25, 27, 29, 31, 32, 36, 42, 44, 45, 49, 52, 56, 62, 64, 65, 69, 71, 73, 75, 76, 80, 86, 88, 89, 93, 95, 99, 101, 102, 106, 108, 110, 112, 113, 117, 123, 125, 126, 130, 133, 137, 143, 145, 146, 150, 152, 154, 156, 157, 161, 167, 169
Offset: 1
Examples
n a(n) A352103(n) A356898(n) - ---- ---------- ---------- 1 1 1 1 2 5 101 1 3 7 111 3 4 8 1001 1 5 12 1101 1 6 18 10101 1 7 20 10111 3 8 21 11001 1 9 25 11101 1 10 27 11111 5
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; c[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]], 10]]; Select[Range[0, 200], OddQ[c[#]] &]
Comments