A356896 Nonnegative numbers whose maximal tribonacci representation (A352103) ends in an even number of 1's.
0, 2, 3, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 19, 22, 23, 24, 26, 28, 30, 33, 34, 35, 37, 38, 39, 40, 41, 43, 46, 47, 48, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 63, 66, 67, 68, 70, 72, 74, 77, 78, 79, 81, 82, 83, 84, 85, 87, 90, 91, 92, 94, 96, 97, 98, 100, 103
Offset: 1
Examples
n a(n) A352103(n) A356898(n) - ---- ---------- ---------- 1 0 0 0 2 2 10 0 3 3 11 2 4 4 100 0 5 6 110 0 6 9 1010 0 7 10 1011 2 8 11 1100 0 9 13 1110 0 10 14 1111 4
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; c[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]], 10]]; Select[Range[0, 100], EvenQ[c[#]] &]
Comments