A356899 Nonnegative numbers whose minimal and maximal tribonacci representations are the same.
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 28, 29, 30, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 67, 72, 73, 74, 76, 77, 78, 79, 80, 96, 97, 98, 99, 100, 102, 103, 104, 109, 110, 111, 113
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; tribmin[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; FromDigits@IntegerDigits[Total[2^(s - 1)], 2]]; tribmax[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Select[Range[0, 150], tribmin[#] == tribmax[#] &]