A356900 a(n) = P(n, 1/2) where P(n, x) = x^(-n)*Sum_{k=0..n} A241171(n, k)*x^k.
1, 1, 8, 154, 5552, 321616, 27325088, 3200979664, 494474723072, 97390246272256, 23820397371219968, 7083386168647642624, 2516691244849530785792, 1052914814802404260765696, 512347915163742179541659648, 286902390859642414913802102784, 183187476890368376930869730803712
Offset: 0
Keywords
Programs
-
Maple
a := n -> 2^n*add(A241171(n, k)*(1/2)^k, k = 0..n): seq(a(n), n = 0..16);
-
SageMath
# Using function PtransMatrix from A269941. def E(n, v): eulr = lambda n: 1 / ((2 * n - 1) * (2 * n)) norm = lambda n, k: (1 / v)^n * factorial(2 * n) P = PtransMatrix(n, eulr, norm) return [(-1)^j * sum([v^k * P[j][k] for k in range(j + 1)]) for j in range(n)] A356900List = lambda n: E(n, -1/2); print(A356900List(17)) # A002105List = lambda n: E(n, 1/2) returns the reduced tangent numbers A002105.
Comments