This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356910 #16 Feb 16 2025 08:34:03 %S A356910 1,0,0,6,12,40,-180,-1512,-11760,142560,2701440,37033920,-47472480, %T A356910 -7299227520,-181704466944,-904179830400,40024286265600, %U A356910 1774386897454080,24426730612869120,-217650777809310720,-26326923875473536000,-662608157128469637120 %N A356910 E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(x^2). %H A356910 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A356910 a(n) = n! * Sum_{k=0..floor(n/3)} (-k+1)^(k-1) * |Stirling1(n-2*k,k)|/(n-2*k)!. %F A356910 E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-x^2 * log(1-x))^k / k!. %F A356910 E.g.f.: A(x) = exp( LambertW(-x^2 * log(1-x)) ). %F A356910 E.g.f.: A(x) = -x^2 * log(1-x)/LambertW(-x^2 * log(1-x)). %t A356910 nmax = 21; A[_] = 1; %t A356910 Do[A[x_] = ((1 - x)^(-x^2))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}]; %t A356910 CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 04 2024 *) %o A356910 (PARI) a(n) = n!*sum(k=0, n\3, (-k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(n-2*k)!); %o A356910 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-x^2*log(1-x))^k/k!))) %o A356910 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-x^2*log(1-x))))) %o A356910 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-x^2*log(1-x)/lambertw(-x^2*log(1-x)))) %Y A356910 Cf. A356905, A356911. %Y A356910 Cf. A353228, A355287. %K A356910 sign %O A356910 0,4 %A A356910 _Seiichi Manyama_, Sep 03 2022