This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356917 #19 Dec 19 2024 11:46:19 %S A356917 1,1,1,2,1,1,1,2,3,1,1,1,1,2,2,4,1,1,1,1,2,3,5,1,1,1,1,1,2,2,3,6,1,1, %T A356917 1,1,1,1,2,2,3,3,7,1,1,1,1,1,2,2,4,8,1,1,1,1,1,1,2,2,2,4,9,1,1,1,1,1, %U A356917 1,1,2,2,2,3,4,10,1,1,1,1,1,1,1,1,2,2,2,2,4,4,11 %N A356917 Irregular triangle read by rows where row n lists the Colijn-Plazzotta subtree numbers, in ascending order, of each vertex of the rooted binary tree with their tree number n. %C A356917 Colijn and Plazzotta enumerate rooted binary trees (every vertex 0 or 2 children) by n=1 as a singleton and thereafter tree n is a root with child subtrees x = A002024(n-1) and y = A002260(n-1). %C A356917 Each row starts with 1's for the childless vertices (A064064(n) of them). %C A356917 Each row ends with n itself (the tree root). %C A356917 The second last term in each row is the numerically largest subtree of the root, which is x. %C A356917 Row lengths are A064002(n), the number of vertices. %H A356917 Kevin Ryde, <a href="/A356917/b356917.txt">Table of n, a(n) for rows 1..500, flattened</a> %H A356917 Caroline Colijn and Giacomo Plazzotta, <a href="https://doi.org/10.1093/sysbio/syx046">A Metric on Phylogenetic Tree Shapes</a>, Systematic Biology, volume 67, number 1, January 2018, pages 113-126, see section 2.3 where their L_n = row n here. %H A356917 Kevin Ryde, <a href="/A356917/a356917.gp.txt">PARI/GP Code</a> %F A356917 row(n) = sort {row(x), row(y), n} for n>=2, where x = A002024(n-1) and y = A002260(n-1). %e A356917 Triangle begins: %e A356917 k=1 2 3 4 5 6 7 8 9 10 11 %e A356917 n=1: 1, %e A356917 n=2: 1, 1, 2, %e A356917 n=3: 1, 1, 1, 2, 3, %e A356917 n=4: 1, 1, 1, 1, 2, 2, 4, %e A356917 n=5: 1, 1, 1, 1, 2, 3, 5, %e A356917 n=6: 1, 1, 1, 1, 1, 2, 2, 3, 6, %e A356917 n=7: 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 7, %e A356917 n=8: 1, 1, 1, 1, 1, 2, 2, 4, 8, %e A356917 Tree n=6 and its subtree numbers are as follows and row 6 is these subtree numbers in ascending order. %e A356917 6 root %e A356917 / \ %e A356917 3 2 %e A356917 / \ / \ %e A356917 2 1 1 1 %e A356917 / \ %e A356917 1 1 %o A356917 (PARI) \\ See links. %Y A356917 Cf. A002024, A002260 (root subtrees). %Y A356917 Cf. A064002 (number of vertices), A064064 (number of childless). %Y A356917 Cf. A356918 (d1 metric). %K A356917 nonn,easy,tabf %O A356917 1,4 %A A356917 _Kevin Ryde_, Sep 19 2022