This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356925 #21 Feb 16 2025 08:34:03 %S A356925 1,1,6,51,614,9655,188209,4389532,119363488,3711190881,129932611723, %T A356925 5060364817200,217054300138136,10168837756846145,516709033266165479, %U A356925 28306732060349788908,1663231006737554997168,104344911495734048046929 %N A356925 E.g.f. satisfies A(x) = 1/(1 - x)^(exp(x) * A(x)). %H A356925 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A356925 E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-exp(x) * log(1-x))^k / k!. %F A356925 E.g.f.: A(x) = exp( -LambertW(exp(x) * log(1-x)) ). %F A356925 E.g.f.: A(x) = LambertW(exp(x) * log(1-x))/(exp(x) * log(1-x)). %F A356925 a(n) ~ sqrt(1 + exp(1+r)/(1-r)) * n^(n-1) / (r^(n - 1/2) * exp(n-1)), where r = 0.249272970940807862774650581662931601739615720771408527... is the root of the equation exp(1+r) * log(1-r) = -1. - _Vaclav Kotesovec_, Nov 14 2022 %t A356925 nmax = 20; CoefficientList[Series[LambertW[E^x * Log[1-x]]/(E^x * Log[1-x]), {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Nov 14 2022 *) %o A356925 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-exp(x)*log(1-x))^k/k!))) %o A356925 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(exp(x)*log(1-x))))) %o A356925 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(lambertw(exp(x)*log(1-x))/(exp(x)*log(1-x)))) %Y A356925 Cf. A191365, A356926. %Y A356925 Cf. A356752, A356753. %Y A356925 Cf. A000272, A002104, A356927. %K A356925 nonn %O A356925 0,3 %A A356925 _Seiichi Manyama_, Sep 04 2022