cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356931 Number of multiset partitions of the prime indices of n into multisets of odd numbers. Number of factorizations of n into members of A066208.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 0, 3, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 4, 0, 2, 1, 0, 2, 0, 0, 0, 0, 0, 1, 7, 0, 2, 0, 0, 0, 0, 0, 7, 1, 0, 0, 4, 0, 2, 1, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 11, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 12, 0, 2, 1, 0, 2, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(440) = 21 multiset partitions of {1,1,1,3,5}:
  {1}{1}{1}{3}{5}  {1}{1}{1}{35}  {1}{1}{135}  {1}{1135}  {11135}
                   {1}{1}{13}{5}  {1}{11}{35}  {11}{135}
                   {1}{11}{3}{5}  {11}{13}{5}  {111}{35}
                   {1}{1}{3}{15}  {1}{13}{15}  {113}{15}
                                  {11}{3}{15}  {13}{115}
                                  {1}{3}{115}  {3}{1115}
                                  {1}{5}{113}  {5}{1113}
                                  {3}{111}{5}
		

Crossrefs

Positions of 0's are A324929, complement A066208.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Other conditions: A050320, A050330, A356936, A322585, A356233, A356945.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],And@@(OddQ[Times@@primeMS[#]]&/@#)&]],{n,100}]

Formula

a(n) = 0 if n is in A324929, otherwise a(n) = A001055(n).