This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356933 #11 Jan 01 2023 17:58:57 %S A356933 1,1,2,8,28,108,524,2608,14176,86576,550672,3782496,27843880, %T A356933 214071392,1751823600,15041687664,134843207240,1269731540864, %U A356933 12427331494304,126619822952928,1341762163389920,14712726577081248,167209881188545344,1963715680476759040,23794190474350155856 %N A356933 Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval. %H A356933 Andrew Howroyd, <a href="/A356933/b356933.txt">Table of n, a(n) for n = 0..500</a> %H A356933 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a> %e A356933 The a(4) = 28 multiset partitions: %e A356933 {1}{111} {1}{112} {1}{123} {1}{234} %e A356933 {1}{1}{1}{1} {1}{122} {1}{223} {2}{134} %e A356933 {1}{222} {1}{233} {3}{124} %e A356933 {2}{111} {2}{113} {4}{123} %e A356933 {2}{112} {2}{123} {1}{2}{3}{4} %e A356933 {2}{122} {2}{133} %e A356933 {1}{1}{1}{2} {3}{112} %e A356933 {1}{1}{2}{2} {3}{122} %e A356933 {1}{2}{2}{2} {3}{123} %e A356933 {1}{1}{2}{3} %e A356933 {1}{2}{2}{3} %e A356933 {1}{2}{3}{3} %t A356933 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A356933 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A356933 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A356933 Table[Length[Select[Join@@mps/@allnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}] %o A356933 (PARI) %o A356933 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A356933 R(n,k) = {EulerT(vector(n, j, if(j%2 == 1, binomial(j+k-1, j))))} %o A356933 seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ _Andrew Howroyd_, Jan 01 2023 %Y A356933 A000041 counts integer partitions, strict A000009. %Y A356933 A000670 counts patterns, ranked by A333217, necklace A019536. %Y A356933 A011782 counts multisets covering an initial interval. %Y A356933 Cf. A055887, A063834, A072233, A270995, A304969, A349050, A349055. %Y A356933 Odd-size multisets are counted by A000302, A027193, A058695, ranked by A026424. %Y A356933 Other conditions: A034691, A116540, A255906, A356937, A356942. %Y A356933 Other types: A050330, A356932, A356934, A356935. %K A356933 nonn %O A356933 0,3 %A A356933 _Gus Wiseman_, Sep 08 2022 %E A356933 Terms a(9) and beyond from _Andrew Howroyd_, Jan 01 2023