cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356933 Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval.

This page as a plain text file.
%I A356933 #11 Jan 01 2023 17:58:57
%S A356933 1,1,2,8,28,108,524,2608,14176,86576,550672,3782496,27843880,
%T A356933 214071392,1751823600,15041687664,134843207240,1269731540864,
%U A356933 12427331494304,126619822952928,1341762163389920,14712726577081248,167209881188545344,1963715680476759040,23794190474350155856
%N A356933 Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval.
%H A356933 Andrew Howroyd, <a href="/A356933/b356933.txt">Table of n, a(n) for n = 0..500</a>
%H A356933 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a>
%e A356933 The a(4) = 28 multiset partitions:
%e A356933   {1}{111}      {1}{112}      {1}{123}      {1}{234}
%e A356933   {1}{1}{1}{1}  {1}{122}      {1}{223}      {2}{134}
%e A356933                 {1}{222}      {1}{233}      {3}{124}
%e A356933                 {2}{111}      {2}{113}      {4}{123}
%e A356933                 {2}{112}      {2}{123}      {1}{2}{3}{4}
%e A356933                 {2}{122}      {2}{133}
%e A356933                 {1}{1}{1}{2}  {3}{112}
%e A356933                 {1}{1}{2}{2}  {3}{122}
%e A356933                 {1}{2}{2}{2}  {3}{123}
%e A356933                               {1}{1}{2}{3}
%e A356933                               {1}{2}{2}{3}
%e A356933                               {1}{2}{3}{3}
%t A356933 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A356933 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A356933 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
%t A356933 Table[Length[Select[Join@@mps/@allnorm[n],OddQ[Times@@Length/@#]&]],{n,0,5}]
%o A356933 (PARI)
%o A356933 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
%o A356933 R(n,k) = {EulerT(vector(n, j, if(j%2 == 1, binomial(j+k-1, j))))}
%o A356933 seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ _Andrew Howroyd_, Jan 01 2023
%Y A356933 A000041 counts integer partitions, strict A000009.
%Y A356933 A000670 counts patterns, ranked by A333217, necklace A019536.
%Y A356933 A011782 counts multisets covering an initial interval.
%Y A356933 Cf. A055887, A063834, A072233, A270995, A304969, A349050, A349055.
%Y A356933 Odd-size multisets are counted by A000302, A027193, A058695, ranked by A026424.
%Y A356933 Other conditions: A034691, A116540, A255906, A356937, A356942.
%Y A356933 Other types: A050330, A356932, A356934, A356935.
%K A356933 nonn
%O A356933 0,3
%A A356933 _Gus Wiseman_, Sep 08 2022
%E A356933 Terms a(9) and beyond from _Andrew Howroyd_, Jan 01 2023