This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356936 #8 Sep 10 2022 07:35:28 %S A356936 1,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,2,1,1,1,1,1,4,1,1,1,1, %T A356936 2,3,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1,2,1,1,1,1,1,4,1,1,1,1,1,2,1,1, %U A356936 1,2,1,3,1,1,2,1,2,2,1,1,1,1,1,2,1,1,1 %N A356936 Number of multiset partitions of the multiset of prime indices of n into intervals. Number of factorizations of n into members of A073485. %C A356936 An interval is a set of positive integers with all differences of adjacent elements equal to 1. %C A356936 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A356936 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a> %e A356936 The a(n) multiset partitions for n = 6, 30, 36, 90, 180: %e A356936 {12} {123} {12}{12} {12}{23} {12}{123} %e A356936 {1}{2} {1}{23} {1}{2}{12} {2}{123} {1}{12}{23} %e A356936 {3}{12} {1}{1}{2}{2} {1}{2}{23} {1}{2}{123} %e A356936 {1}{2}{3} {2}{3}{12} {3}{12}{12} %e A356936 {1}{2}{2}{3} {1}{1}{2}{23} %e A356936 {1}{2}{3}{12} %e A356936 {1}{1}{2}{2}{3} %e A356936 The a(n) factorizations for n = 6, 30, 36, 90, 180: %e A356936 (6) (30) (6*6) (3*30) (6*30) %e A356936 (2*3) (5*6) (2*3*6) (6*15) (5*6*6) %e A356936 (2*15) (2*2*3*3) (3*5*6) (2*3*30) %e A356936 (2*3*5) (2*3*15) (2*6*15) %e A356936 (2*3*3*5) (2*3*5*6) %e A356936 (2*2*3*15) %e A356936 (2*2*3*3*5) %t A356936 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356936 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A356936 chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}]; %t A356936 Table[Length[Select[facs[n],And@@chQ/@primeMS/@#&]],{n,100}] %Y A356936 A000688 counts factorizations into prime powers. %Y A356936 A001055 counts factorizations. %Y A356936 A001221 counts prime divisors, sum A001414. %Y A356936 A001222 counts prime factors with multiplicity. %Y A356936 A356069 counts gapless divisors, initial A356224 (complement A356225). %Y A356936 A056239 adds up prime indices, row sums of A112798. %Y A356936 Intervals are counted by A000012, A001227, ranked by A073485. %Y A356936 Other types: A107742, A356233, A356937, A356938, A356939. %Y A356936 Other conditions: A050320, A050330, A322585, A356931, A356945. %Y A356936 Cf. A003963, A073491, A287170, A328195, A356234. %K A356936 nonn %O A356936 1,6 %A A356936 _Gus Wiseman_, Sep 08 2022