This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356938 #5 Sep 10 2022 21:05:38 %S A356938 1,1,3,7,18,41,101,228,538,1209 %N A356938 Number of multisets of intervals whose multiset union is of size n and covers an initial interval of positive integers with weakly decreasing multiplicities. %C A356938 An interval such as {3,4,5} is a set of positive integers with all differences of adjacent elements equal to 1. %H A356938 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a> %e A356938 The a(1) = 1 through a(4) = 18 multiset partitions: %e A356938 {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} %e A356938 {{1},{1}} {{1},{1,2}} {{1},{1,2,3}} %e A356938 {{1},{2}} {{1},{2,3}} {{1,2},{1,2}} %e A356938 {{3},{1,2}} {{1},{2,3,4}} %e A356938 {{1},{1},{1}} {{1,2},{3,4}} %e A356938 {{1},{1},{2}} {{4},{1,2,3}} %e A356938 {{1},{2},{3}} {{1},{1},{1,2}} %e A356938 {{1},{1},{2,3}} %e A356938 {{1},{2},{1,2}} %e A356938 {{1},{2},{3,4}} %e A356938 {{1},{3},{1,2}} %e A356938 {{1},{4},{2,3}} %e A356938 {{3},{4},{1,2}} %e A356938 {{1},{1},{1},{1}} %e A356938 {{1},{1},{1},{2}} %e A356938 {{1},{1},{2},{2}} %e A356938 {{1},{1},{2},{3}} %e A356938 {{1},{2},{3},{4}} %t A356938 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A356938 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A356938 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A356938 chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}]; %t A356938 Table[Length[Select[Join@@mps/@strnorm[n],And@@chQ/@#&]],{n,0,5}] %Y A356938 A000041 counts integer partitions, strict A000009. %Y A356938 A000670 counts patterns, ranked by A333217, necklace A019536. %Y A356938 A011782 counts multisets covering an initial interval. %Y A356938 Intervals are counted by A000012, A001227, ranked by A073485. %Y A356938 Other conditions: A035310, A063834, A330783, A356934. %Y A356938 Other types: A107742, A356936, A356937, A356939, A356943, A356954. %Y A356938 Cf. A055887, A072233, A270995, A304969, A349050, A349055. %K A356938 nonn,more %O A356938 0,3 %A A356938 _Gus Wiseman_, Sep 09 2022