A356943 Number of multiset partitions into gapless blocks of a size-n multiset covering an initial interval with weakly decreasing multiplicities.
1, 1, 4, 11, 37, 101, 328, 909, 2801
Offset: 0
Examples
The a(1) = 1 through a(3) = 11 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,2}} {{1,1,2}} {{1},{1}} {{1,2,3}} {{1},{2}} {{1},{1,1}} {{1},{1,2}} {{1},{2,3}} {{2},{1,1}} {{3},{1,2}} {{1},{1},{1}} {{1},{1},{2}} {{1},{2},{3}}
Crossrefs
A011782 counts multisets covering an initial interval.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]]; Table[Length[Select[Join@@mps/@strnorm[n],And@@nogapQ/@#&]],{n,0,5}]
Comments