cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356943 Number of multiset partitions into gapless blocks of a size-n multiset covering an initial interval with weakly decreasing multiplicities.

Original entry on oeis.org

1, 1, 4, 11, 37, 101, 328, 909, 2801
Offset: 0

Views

Author

Gus Wiseman, Sep 09 2022

Keywords

Comments

A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.

Examples

			The a(1) = 1 through a(3) = 11 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}
         {{1,2}}    {{1,1,2}}
         {{1},{1}}  {{1,2,3}}
         {{1},{2}}  {{1},{1,1}}
                    {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,1}}
                    {{3},{1,2}}
                    {{1},{1},{1}}
                    {{1},{1},{2}}
                    {{1},{2},{3}}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Gapless multisets are counted by A034296, ranked by A073491.
Other conditions: A035310, A063834, A330783, A356934, A356938, A356954.
Other types: A356233, A356941, A356942, A356944.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    Table[Length[Select[Join@@mps/@strnorm[n],And@@nogapQ/@#&]],{n,0,5}]