A356945 Number of multiset partitions of the prime indices of n such that each block covers an initial interval. Number of factorizations of n into members of A055932.
1, 1, 0, 2, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 7, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a{n} multiset partitions for n = 8, 24, 72, 96: {{111}} {{1112}} {{11122}} {{111112}} {{1}{11}} {{1}{112}} {{1}{1122}} {{1}{11112}} {{1}{1}{1}} {{11}{12}} {{11}{122}} {{11}{1112}} {{1}{1}{12}} {{12}{112}} {{111}{112}} {{1}{1}{122}} {{12}{1111}} {{1}{12}{12}} {{1}{1}{1112}} {{1}{11}{112}} {{11}{11}{12}} {{1}{12}{111}} {{1}{1}{1}{112}} {{1}{1}{11}{12}} {{1}{1}{1}{1}{12}}
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; nnQ[m_]:=PrimePi/@First/@FactorInteger[m]==Range[PrimePi[Max@@First/@FactorInteger[m]]]; Table[Length[Select[facs[n],And@@nnQ/@#&]],{n,100}]
Comments