A356946 Number of stable digits of the integer tetration n^^n (i.e., maximum nonnegative integer m such that n^^n is congruent modulo 10^m to n^^(n + 1)).
1, 0, 2, 3, 12, 7, 12, 7, 9
Offset: 1
Examples
For n = 3, 3^3^3 is congruent to 3^3^3^3 (mod 10^2) and 3^3^3 is not congruent to 3^3^3^3 (mod 10^3). Thus, a(3) = 2.
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
Links
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, 2020, 26(3), 245-260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441-457.
- Wikipedia, Tetration
Comments