cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356946 Number of stable digits of the integer tetration n^^n (i.e., maximum nonnegative integer m such that n^^n is congruent modulo 10^m to n^^(n + 1)).

Original entry on oeis.org

1, 0, 2, 3, 12, 7, 12, 7, 9
Offset: 1

Views

Author

Marco Ripà, Sep 05 2022

Keywords

Comments

a(10) = 10^^9 is too large to include. In general, if n is a multiple of 10, then a(n) is given by the number of trailing zeros that appear at the end of n^^n.
This follows from the constancy of the "congruence speed" (AKA "convergence speed" here on the OEIS) of hyper-3 for any exponentiation base which is a multiple of 10, otherwise the congruence speed is constant only for hyper-4 and it is strictly positive for any tetration base n >= 1 that is not a multiple of 10 (for an explicit formula to calculate a(n) for any n, see the linked paper entitled "Number of stable digits of any integer tetration").

Examples

			For n = 3, 3^3^3 is congruent to 3^3^3^3 (mod 10^2) and 3^3^3 is not congruent to 3^3^3^3 (mod 10^3). Thus, a(3) = 2.
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.

Crossrefs