cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356947 Emirps p such that p == 1 (mod s) and R(p) == 1 (mod s), where R(p) is the digit reversal of p and s the sum of digits of p.

Original entry on oeis.org

1021, 1031, 1201, 1259, 1301, 9521, 10253, 10711, 11071, 11161, 11243, 11701, 12113, 12241, 14221, 15907, 16111, 16481, 17011, 17491, 18461, 19471, 30757, 31121, 34211, 35201, 70951, 71347, 71569, 72337, 73327, 74317, 75703, 96517, 100621, 101611, 101701, 102061, 102913, 103141, 105211, 106661
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Sep 05 2022

Keywords

Comments

Emirps p such that p and its digit reversal are quasi-Niven numbers.

Examples

			a(3) = 1201 is a term because it and its digit reversal 1021 are distinct primes with sum of digits 4, and 1201 == 1021 == 1 (mod 4).
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,i,r,s;
      if not isprime(n) then return false fi;
      L:= convert(n,base,10);
      r:= add(L[-i]*10^(i-1),i=1..nops(L));
      if r = n or not isprime(r) then return false fi;
      s:= convert(L,`+`);
      n mod s = 1 and r mod s = 1
    end proc:
    select(filter, [seq(i,i=13 .. 200000, 2)]);
  • Mathematica
    Select[Range[110000], (r = IntegerReverse[#]) != # && PrimeQ[#] && PrimeQ[r] && Divisible[# - 1, (s = Plus @@ IntegerDigits[#])] && Divisible[r - 1, s] &] (* Amiram Eldar, Sep 06 2022 *)
  • Python
    from sympy import isprime
    def ok(n):
        strn = str(n)
        R, s = int(strn[::-1]), sum(map(int, strn))
        return n != R and n%s == 1 and R%s == 1 and isprime(n) and isprime(R)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Sep 06 2022